Download or read book Control of Stochastic Hybrid Systems based on Probabilistic Reachable Set Computation written by Leonhard Asselborn and published by kassel university press GmbH. This book was released on 2018-09-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis proposes an algorithmic controller synthesis based on the computation of probabilistic reachable sets for stochastic hybrid systems. Hybrid systems consist in general of a composition of discrete and continuous valued dynamics, and are able to capture a wide range of physical phenomena. The stochasticity is considered in form of normally distributed initial continuous states and normally distributed disturbances, resulting in stochastic hybrid systems. The reachable sets describe all states, which are reachable by a system for a given initialization of the system state, inputs, disturbances, and time horizon. For stochastic hybrid systems, these sets are probabilistic, since the system state and disturbance are random variables. This thesis introduces probabilistic reachable sets with a predefined confidence, which are used in an optimization based procedure for the determination of stabilizing control inputs. Besides the stabilizing property, the controlled dynamics also observes input constraints, as well as, so-called chance constraints for the continuous state. The main contribution of this thesis is the formulation of an algorithmic control procedure for each considerd type of stochastic hybrid systems, where different discrete dynamics are considered. First, a control procedure for a deterministic system with bounded disturbances is introduced, and thereafter a probabilistic distribution of the system state and the disturbance is assumed. The formulation of probabilistic reachable sets with a predefined confidence is subsequently used in a control procedure for a stochastic hybrid system, in which the switch of the continuous dynamics is externally induced. Finally, the control procedure based on reachable set computation is extended to a type of stochastic hybrid systems with autonomously switching of the continuous dynamics.
Download or read book Stochastic Hybrid Systems written by Christos G. Cassandras and published by CRC Press. This book was released on 2018-10-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.
Download or read book 15th European Workshop on Advanced Control and Diagnosis ACD 2019 written by Elena Zattoni and published by Springer Nature. This book was released on 2022-06-13 with total page 1441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, published in two volumes, embodies the proceedings of the 15th European Workshop on Advanced Control and Diagnosis (ACD 2019) held in Bologna, Italy, in November 2019. It features contributed and invited papers from academics and professionals specializing in an important aspect of control and automation. The book discusses current theoretical research developments and open problems and illustrates practical applications and industrial priorities. With a focus on both theory and applications, it spans a wide variety of up-to-date topics in the field of systems and control, including robust control, adaptive control, fault-tolerant control, control reconfiguration, and model-based diagnosis of linear, nonlinear and hybrid systems. As the subject coverage has expanded to include cyber-physical production systems, industrial internet of things and sustainability issues, some contributions are of an interdisciplinary nature, involving ICT disciplines and environmental sciences. This book is a valuable reference for both academics and professionals in the area of systems and control, with a focus on advanced control, automation, fault diagnosis and condition monitoring.
Download or read book Automated Reasoning for Systems Biology and Medicine written by Pietro Liò and published by Springer. This book was released on 2019-06-11 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents outstanding contributions in an exciting, new and multidisciplinary research area: the application of formal, automated reasoning techniques to analyse complex models in systems biology and systems medicine. Automated reasoning is a field of computer science devoted to the development of algorithms that yield trustworthy answers, providing a basis of sound logical reasoning. For example, in the semiconductor industry formal verification is instrumental to ensuring that chip designs are free of defects (or “bugs”). Over the past 15 years, systems biology and systems medicine have been introduced in an attempt to understand the enormous complexity of life from a computational point of view. This has generated a wealth of new knowledge in the form of computational models, whose staggering complexity makes manual analysis methods infeasible. Sound, trusted, and automated means of analysing the models are thus required in order to be able to trust their conclusions. Above all, this is crucial to engineering safe biomedical devices and to reducing our reliance on wet-lab experiments and clinical trials, which will in turn produce lower economic and societal costs. Some examples of the questions addressed here include: Can we automatically adjust medications for patients with multiple chronic conditions? Can we verify that an artificial pancreas system delivers insulin in a way that ensures Type 1 diabetic patients never suffer from hyperglycaemia or hypoglycaemia? And lastly, can we predict what kind of mutations a cancer cell is likely to undergo? This book brings together leading researchers from a number of highly interdisciplinary areas, including: · Parameter inference from time series · Model selection · Network structure identification · Machine learning · Systems medicine · Hypothesis generation from experimental data · Systems biology, systems medicine, and digital pathology · Verification of biomedical devices “This book presents a comprehensive spectrum of model-focused analysis techniques for biological systems ...an essential resource for tracking the developments of a fast moving field that promises to revolutionize biology and medicine by the automated analysis of models and data.”Prof Luca Cardelli FRS, University of Oxford
Download or read book Computer Aided Verification written by Isil Dillig and published by Springer. This book was released on 2019-07-12 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency.
Download or read book Handbook of Hybrid Systems Control written by Jan Lunze and published by Cambridge University Press. This book was released on 2009-10-15 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.
Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Download or read book Foundations of Probabilistic Programming written by Gilles Barthe and published by Cambridge University Press. This book was released on 2020-12-03 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
Download or read book An Introduction to Hybrid Dynamical Systems written by Arjan J. van der Schaft and published by Springer. This book was released on 2007-10-03 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Download or read book Tools and Algorithms for the Construction and Analysis of Systems written by Tomáš Vojnar and published by Springer. This book was released on 2019-04-03 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems.
Download or read book Modeling Decisions for Artificial Intelligence written by Vincenc Torra and published by Springer Science & Business Media. This book was released on 2006-03-20 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2006, held in Tarragona, Spain, in April 2006. The 31 revised full papers presented together with 4 invited lectures were thoroughly reviewed and selected from 97 submissions. The papers are devoted to theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques.
Download or read book Reproducing Kernel Hilbert Spaces in Probability and Statistics written by Alain Berlinet and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Download or read book Computer Performance Evaluation Modelling Techniques and Tools written by Boudewijn R. Haverkort and published by Springer Science & Business Media. This book was released on 2000-03-13 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Modelling Tools and Techniques for Computer Communication System Performance Evaluation, TOOLS 2000, held in Schaumburg, IL, USA in March 2000. The 21 revised full papers presented were carefully reviewed and selected from a total of 49 submissions. Also included are 15 tool descriptions and one invited paper. The papers are organized in topical sections on queueing network models, optimization in mobile networks, stochastic Petri nets, simulation, formal methods and performance evaluation, and measurement tools and applications.
Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Download or read book Introduction to Embedded Systems Second Edition written by Edward Ashford Lee and published by MIT Press. This book was released on 2017-01-06 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.
Download or read book Formal Verification of Probabilistic Systems written by Luca De Alfaro and published by . This book was released on 1998 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents methods for the formal modeling and specification of probabilistic systems, and algorithms for the automated verification of these systems. Our system models describe the behavior of a system in terms of probability, nondeterminism, fairness and time.