EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Finite Element Method  Theory  Implementation  and Applications

Download or read book The Finite Element Method Theory Implementation and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Book The Least Squares Finite Element Method

Download or read book The Least Squares Finite Element Method written by Bo-nan Jiang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.

Book An Eulerian Level Set Method for Partial Differential Equations on Evolving Surfaces

Download or read book An Eulerian Level Set Method for Partial Differential Equations on Evolving Surfaces written by Gerhard Dziuk and published by . This book was released on 2007 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Galerkin Finite Element Methods for Parabolic Problems

Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Book Geometrically Unfitted Finite Element Methods and Applications

Download or read book Geometrically Unfitted Finite Element Methods and Applications written by Stéphane P. A. Bordas and published by Springer. This book was released on 2018-03-13 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.

Book Partial Differential Equations and the Finite Element Method

Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.

Book The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

Download or read book The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations written by A. K. Aziz and published by Academic Press. This book was released on 2014-05-10 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

Book Advanced Finite Element Methods with Applications

Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Book The Finite Element Method

Download or read book The Finite Element Method written by A. J. Davies and published by Oxford University Press. This book was released on 2011-09-08 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. Contains worked examples throughout and each chapter has a set of exercises with detailed solutions.

Book Finite Element Method

Download or read book Finite Element Method written by Gouri Dhatt and published by John Wiley & Sons. This book was released on 2012-12-27 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an in-depth presentation of the finite element method, aimed at engineers, students and researchers in applied sciences. The description of the method is presented in such a way as to be usable in any domain of application. The level of mathematical expertise required is limited to differential and matrix calculus. The various stages necessary for the implementation of the method are clearly identified, with a chapter given over to each one: approximation, construction of the integral forms, matrix organization, solution of the algebraic systems and architecture of programs. The final chapter lays the foundations for a general program, written in Matlab, which can be used to solve problems that are linear or otherwise, stationary or transient, presented in relation to applications stemming from the domains of structural mechanics, fluid mechanics and heat transfer.

Book An Introduction to the Finite Element Method for Differential Equations

Download or read book An Introduction to the Finite Element Method for Differential Equations written by Mohammad Asadzadeh and published by John Wiley & Sons. This book was released on 2020-08-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.

Book Finite Elements and Approximation

Download or read book Finite Elements and Approximation written by O. C. Zienkiewicz and published by Courier Corporation. This book was released on 2013-04-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.

Book Analysis of a Finite Element Method

Download or read book Analysis of a Finite Element Method written by Granville Sewell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text can be used for two quite different purposes. It can be used as a reference book for the PDElPROTRAN user· who wishes to know more about the methods employed by PDE/PROTRAN Edition 1 (or its predecessor, TWODEPEP) in solving two-dimensional partial differential equations. However, because PDE/PROTRAN solves such a wide class of problems, an outline of the algorithms contained in PDElPROTRAN is also quite suitable as a text for an introductory graduate level finite element course. Algorithms which solve elliptic, parabolic, hyperbolic, and eigenvalue partial differential equation problems are pre sented, as are techniques appropriate for treatment of singularities, curved boundaries, nonsymmetric and nonlinear problems, and systems of PDEs. Direct and iterative linear equation solvers are studied. Although the text emphasizes those algorithms which are actually implemented in PDEI PROTRAN, and does not discuss in detail one- and three-dimensional problems, or collocation and least squares finite element methods, for example, many of the most commonly used techniques are studied in detail. Algorithms applicable to general problems are naturally emphasized, and not special purpose algorithms which may be more efficient for specialized problems, such as Laplace's equation. It can be argued, however, that the student will better understand the finite element method after seeing the details of one successful implementation than after seeing a broad overview of the many types of elements, linear equation solvers, and other options in existence.

Book The Finite Element Method in Partial Differential Equations

Download or read book The Finite Element Method in Partial Differential Equations written by Andrew R. Mitchell and published by John Wiley & Sons. This book was released on 1977 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Methods

    Book Details:
  • Author : Jonathan Whiteley
  • Publisher : Springer
  • Release : 2017-01-26
  • ISBN : 3319499718
  • Pages : 236 pages

Download or read book Finite Element Methods written by Jonathan Whiteley and published by Springer. This book was released on 2017-01-26 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.