EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Amplitudes  Hodge Theory and Ramification

Download or read book Amplitudes Hodge Theory and Ramification written by Clay Mathematics Institute, Summer School Staff and published by Clay Mathematics Institute. This book was released on 2020 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of the lectures presented at the Clay Mathematics Institute 2014 Summer School, ``Periods and Motives: Feynman amplitudes in the 21st century'', which took place at the Instituto de Ciencias Matematicas-ICMAT (Institute of Mathematical Sciences) in Madrid, Spain. It covers the presentations by S. Bloch, by M. Marcolli and by L. Kindler and K. Rulling. The main topics of these lectures are Feynman integrals and ramification theory. On the Feynman integrals side, their relation with Hodge structures and heights as well as their monodromy are explained in Bloch's lectures. Two constructions of Feynman integrals on configuration spaces are presented in Ceyhan and Marcolli's notes. On the ramification theory side an introduction to the theory of $l$-adic sheaves with emphasis on their ramification theory is given. These notes will equip the reader with the necessary background knowledge to read current literature on these subjects.

Book From Hodge Theory to Integrability and TQFT

Download or read book From Hodge Theory to Integrability and TQFT written by Ron Donagi and published by American Mathematical Soc.. This book was released on 2008 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.

Book Noncommutative Geometry  Quantum Fields and Motives

Download or read book Noncommutative Geometry Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Book Chern Simons Theory  Matrix Models  and Topological Strings

Download or read book Chern Simons Theory Matrix Models and Topological Strings written by Marcos Marino and published by Oxford University Press. This book was released on 2005-09-22 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the old idea that gauge theories and string theories are equivalent has been implemented and developed in various ways, and there are by now various models where the string theory / gauge theory correspondence is at work. One of the most important examples of this correspondence relates Chern-Simons theory, a topological gauge theory in three dimensions which describes knot and three-manifold invariants, to topological string theory, which is deeply related to Gromov-Witten invariants. This has led to some surprising relations between three-manifold geometry and enumerative geometry. This book gives the first coherent presentation of this and other related topics. After an introduction to matrix models and Chern-Simons theory, the book describes in detail the topological string theories that correspond to these gauge theories and develops the mathematical implications of this duality for the enumerative geometry of Calabi-Yau manifolds and knot theory. It is written in a pedagogical style and will be useful reading for graduate students and researchers in both mathematics and physics willing to learn about these developments.

Book Mixed Hodge Structures and Singularities

Download or read book Mixed Hodge Structures and Singularities written by Valentine S. Kulikov and published by Cambridge University Press. This book was released on 1998-04-27 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. Here, some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This is an excellent resource for all researchers in singularity theory, algebraic or differential geometry.

Book Infinite Dimensional Groups and Manifolds

Download or read book Infinite Dimensional Groups and Manifolds written by Tilmann Wurzbacher and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is a collection of refereed research papers on infinite dimensional groups and manifolds in mathematics and quantum physics. Topics covered are: new classes of Lie groups of mappings, the Burgers equation, the Chern--Weil construction in infinite dimensions, the hamiltonian approach to quantum field theory, and different aspects of large N limits ranging from approximation methods in quantum mechanics to modular forms and string/gauge theory duality. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of important themes of research at the forefront of mathematics and theoretical physics.

Book Probability and Statistical Physics in Two and More Dimensions

Download or read book Probability and Statistical Physics in Two and More Dimensions written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2012 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of lecture notes for six of the ten courses given in Buzios, Brazil by prominent probabilists at the 2010 Clay Mathematics Institute Summer School, ``Probability and Statistical Physics in Two and More Dimensions'' and at the XIV Brazilian School of Probability. In the past ten to fifteen years, various areas of probability theory related to statistical physics, disordered systems and combinatorics have undergone intensive development. A number of these developments deal with two-dimensional random structures at their critical points, and provide new tools and ways of coping with at least some of the limitations of Conformal Field Theory that had been so successfully developed in the theoretical physics community to understand phase transitions of two-dimensional systems. Included in this selection are detailed accounts of all three foundational courses presented at the Clay school--Schramm-Loewner Evolution and other Conformally Invariant Objects, Noise Sensitivity and Percolation, Scaling Limits of Random Trees and Planar Maps--together with contributions on Fractal and Multifractal properties of SLE and Conformal Invariance of Lattice Models. Finally, the volume concludes with extended articles based on the courses on Random Polymers and Self-Avoiding Walks given at the Brazilian School of Probability during the final week of the school. Together, these notes provide a panoramic, state-of-the-art view of probability theory areas related to statistical physics, disordered systems and combinatorics. Like the lectures themselves, they are oriented towards advanced students and postdocs, but experts should also find much of interest.

Book ADEX Theory

    Book Details:
  • Author : Saul Paul Sirag
  • Publisher : World Scientific
  • Release : 2016
  • ISBN : 981465650X
  • Pages : 277 pages

Download or read book ADEX Theory written by Saul Paul Sirag and published by World Scientific. This book was released on 2016 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book shows how the ADE Coxeter graphs unify at least 20 different types of mathematical structures. These mathematical structures are of great utility in unified field theory, string theory, and other areas of physics."--Provided by publisher.

Book The Shape of Inner Space

Download or read book The Shape of Inner Space written by Shing-Tung Yau and published by Il Saggiatore. This book was released on 2010-09-07 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Feynman Motives

    Book Details:
  • Author : Matilde Marcolli
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814271217
  • Pages : 234 pages

Download or read book Feynman Motives written by Matilde Marcolli and published by World Scientific. This book was released on 2010 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer. Two different approaches to the subject are described. The first, a OC bottom-upOCO approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of BlochOCoEsnaultOCoKreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, OC top-downOCO approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a RiemannOCoHilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry. The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area. Sample Chapter(s). Chapter 1: Perturbative quantum field theory and Feynman diagrams (350 KB). Contents: Perturbative Quantum Field Theory and Feynman Diagrams; Motives and Periods; Feynman Integrals and Algebraic Varieties; Feynman Integrals and GelfandOCoLeray Forms; ConnesOCoKreimer Theory in a Nutshell; The RiemannOCoHilbert Correspondence; The Geometry of DimReg; Renormalization, Singularities, and Hodge Structures; Beyond Scalar Theories. Readership: Graduate students and researchers in mathematical physics and theoretical physics.

Book The Abel Prize 2013 2017

Download or read book The Abel Prize 2013 2017 written by Helge Holden and published by Springer. This book was released on 2019-02-23 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.

Book Aspects of Scattering Amplitudes and Moduli Space Localization

Download or read book Aspects of Scattering Amplitudes and Moduli Space Localization written by Sebastian Mizera and published by Springer Nature. This book was released on 2020-09-23 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization. After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those to scattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion. In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.

Book The Geometry of Algebraic Cycles

Download or read book The Geometry of Algebraic Cycles written by Reza Akhtar and published by American Mathematical Soc.. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

Book The Atiyah Patodi Singer Index Theorem

Download or read book The Atiyah Patodi Singer Index Theorem written by Richard Melrose and published by CRC Press. This book was released on 1993-03-31 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the lecture notes of a graduate course given at MIT, this sophisticated treatment leads to a variety of current research topics and will undoubtedly serve as a guide to further studies.

Book New Paths Towards Quantum Gravity

Download or read book New Paths Towards Quantum Gravity written by Bernhelm Booß-Bavnbek and published by Springer Science & Business Media. This book was released on 2010-06-04 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aside from the obvious statement that it should be a theory capable of unifying general relativity and quantum field theory, not much is known about the true nature of quantum gravity. New ideas - and there are many of them for this is an exciting field of research - often diverge to a degree where it seems impossible to decide in which of the many possible direction(s) the ongoing developments should be further sustained. The division of the book in two (overlapping) parts reflects the duality between the physical vision and the mathematical construction. The former is represented by tutorial reviews on non-commutative geometry, on space-time discretization and renormalization and on gauge field path integrals. The latter one by lectures on cohomology, on stochastic geometry and on mathematical tools for the effective action in quantum gravity. The book will benefit everyone working or entering the field of quantum gravity research.

Book Arithmetic Noncommutative Geometry

Download or read book Arithmetic Noncommutative Geometry written by Matilde Marcolli and published by American Mathematical Soc.. This book was released on 2005 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arithmetic Noncommutative Geometry uses ideas and tools from noncommutative geometry to address questions in a new way and to reinterpret results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at Archimedean places of arithmetic surfaces and varieties. Noncommutative geometry can be expected to say something about topics of arithmetic interest because it provides the right framework for which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry. With a foreword written by Yuri Manin and a brief introduction to noncommutative geometry, this book offers a comprehensive account of the cross fertilization between two important areas, noncommutative geometry and number theory. It is suitable for graduate students and researchers interested in these areas.