Download or read book Algebraic Methods in Philosophical Logic written by J. Michael Dunn and published by OUP Oxford. This book was released on 2001-06-28 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text demonstrates how various notions of logic can be viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial- gaggles, and tonoids. An imporatant sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.
Download or read book Algebraic Methods of Mathematical Logic written by Ladislav Rieger and published by Elsevier. This book was released on 2014-05-12 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Methods of Mathematical Logic focuses on the algebraic methods of mathematical logic, including Boolean algebra, mathematical language, and arithmetization. The book first offers information on the dialectic of the relation between mathematical and metamathematical aspects; metamathematico-mathematical parallelism and its natural limits; practical applications of methods of mathematical logic; and principal mathematical tools of mathematical logic. The text then elaborates on the language of mathematics and its symbolization and recursive construction of the relation of consequence. Discussions focus on recursive construction of the relation of consequence, fundamental descriptively-semantic rules, mathematical logic and mathematical language as a material system of signs, and the substance and purpose of symbolization of mathematical language. The publication examines expressive possibilities of symbolization; intuitive and mathematical notions of an idealized axiomatic mathematical theory; and the algebraic theory of elementary predicate logic. Topics include the notion of Boolean algebra based on joins, meets, and complementation, logical frame of a language and mathematical theory, and arithmetization and algebraization. The manuscript is a valuable reference for mathematicians and researchers interested in the algebraic methods of mathematical logic.
Download or read book Mathematical Logic and Model Theory written by Alexander Prestel and published by Springer Science & Business Media. This book was released on 2011-08-21 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Download or read book Mathematical Logic written by H.-D. Ebbinghaus and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Download or read book Proof Theory and Algebra in Logic written by Hiroakira Ono and published by Springer. This book was released on 2019-08-02 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.
Download or read book An Algebraic Introduction to Mathematical Logic written by D.W. Barnes and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Download or read book An Algebraic Approach to Non classical Logics written by Helena Rasiowa and published by . This book was released on 1974 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is to formulate an algebraic approach to a carefully selected widest possible class of logics and to prove fundamental theorems for it, which previously have usually been proved for each of those logics separately. The second aim of this book has been to give a number of examples of logics which belong to the class above.
Download or read book Methods in Mathematical Logic written by Kondagunta Sundaresan and published by . This book was released on 1985 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Algebraic Structures written by Joseph Landin and published by Courier Corporation. This book was released on 2012-08-29 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
Download or read book The Mathematics of Metamathematics written by Helena Rasiowa and published by . This book was released on 1963 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantum Logic in Algebraic Approach written by Miklós Rédei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.
Download or read book A Course in Mathematical Logic for Mathematicians written by Yu. I. Manin and published by Springer Science & Business Media. This book was released on 2009-10-13 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Download or read book Mathematics and Logic written by Mark Kac and published by Courier Corporation. This book was released on 1992-01-01 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fascinating study of the origin and nature of mathematical thought, including relation of mathematics and science, 20th-century developments, impact of computers, and more.Includes 34 illustrations. 1968 edition."
Download or read book An Investigation of the Laws of Thought written by George Boole and published by . This book was released on 1854 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Mathematical Logic written by Elliot Mendelsohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Download or read book Foundations of Mathematical Logic written by Haskell Brooks Curry and published by Courier Corporation. This book was released on 1977-01-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.