EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advance Data from Vital and Health Statistics

Download or read book Advance Data from Vital and Health Statistics written by and published by . This book was released on 1993 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advance Data from Vital   Health Statistics of the National Center for Health Statistics

Download or read book Advance Data from Vital Health Statistics of the National Center for Health Statistics written by National Center for Health Statistics (U.S.) and published by . This book was released on 1993 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced R

    Book Details:
  • Author : Hadley Wickham
  • Publisher : CRC Press
  • Release : 2015-09-15
  • ISBN : 1498759807
  • Pages : 669 pages

Download or read book Advanced R written by Hadley Wickham and published by CRC Press. This book was released on 2015-09-15 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.

Book Data Science with Julia

Download or read book Data Science with Julia written by Paul D. McNicholas and published by CRC Press. This book was released on 2019-01-02 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Université Côte d’Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Université Côte d’Azur, Nice, France

Book Learn Data Analytics for Beginners to Core Advance

Download or read book Learn Data Analytics for Beginners to Core Advance written by Janani Sathish and published by Independently Published. This book was released on 2021-05 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science has taken the planet by storm. Every field of study and area of business has been affected as people increasingly realize the worth of the incredible quantities of knowledge being generated. But to extract value from those data, one must be trained within the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it a useful tool for data scientists round the world. This book is about the basics of R programming. you'll start with the fundamentals of the language, find out how to control datasets, the way to write functions, and the way to debug and optimize code. With the basics provided during this book, you'll have a solid foundation on which to create your data science toolbox. during this book you'll learn what you would like to understand to start assembling and leading a knowledge science enterprise, albeit you've got never worked in data science before. You'll get a crash program in data science in order that you'll be familiar with the sector and understand your role as a pacesetter . You'll also find out how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the info science pipeline, the goals of every stage, and the way to stay your team on track throughout. Finally, you'll learn some down-to-earth practical skills which will assist you overcome the common challenges that regularly derail data science projects Reproducibility is that the concept data analyses should be published or made available with their data and software code in order that others may verify the findings and repose on them.

Book Going Digital to Advance Data Governance for Growth and Well being

Download or read book Going Digital to Advance Data Governance for Growth and Well being written by OECD and published by OECD Publishing. This book was released on 2022-12-14 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data are generated wherever digital technologies are deployed namely, in almost every part of modern life. Using these data can empower individuals, drive innovation, enable new digital products and improve policy making and public service delivery.

Book Advanced Data Science and Analytics with Python

Download or read book Advanced Data Science and Analytics with Python written by Jesus Rogel-Salazar and published by CRC Press. This book was released on 2020-05-05 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.

Book Inventory of Machine readable Data Available

Download or read book Inventory of Machine readable Data Available written by United States. Bureau of the Census and published by . This book was released on 1964 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book Monthly Catalogue  United States Public Documents

Download or read book Monthly Catalogue United States Public Documents written by and published by . This book was released on 1993 with total page 1038 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced R  Second Edition

Download or read book Advanced R Second Edition written by Hadley Wickham and published by CRC Press. This book was released on 2019-05-24 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced R helps you understand how R works at a fundamental level. It is designed for R programmers who want to deepen their understanding of the language, and programmers experienced in other languages who want to understand what makes R different and special. This book will teach you the foundations of R; three fundamental programming paradigms (functional, object-oriented, and metaprogramming); and powerful techniques for debugging and optimising your code. By reading this book, you will learn: The difference between an object and its name, and why the distinction is important The important vector data structures, how they fit together, and how you can pull them apart using subsetting The fine details of functions and environments The condition system, which powers messages, warnings, and errors The powerful functional programming paradigm, which can replace many for loops The three most important OO systems: S3, S4, and R6 The tidy eval toolkit for metaprogramming, which allows you to manipulate code and control evaluation Effective debugging techniques that you can deploy, regardless of how your code is run How to find and remove performance bottlenecks The second edition is a comprehensive update: New foundational chapters: "Names and values," "Control flow," and "Conditions" comprehensive coverage of object oriented programming with chapters on S3, S4, R6, and how to choose between them Much deeper coverage of metaprogramming, including the new tidy evaluation framework use of new package like rlang (http://rlang.r-lib.org), which provides a clean interface to low-level operations, and purr (http://purrr.tidyverse.org/) for functional programming Use of color in code chunks and figures Hadley Wickham is Chief Scientist at RStudio, an Adjunct Professor at Stanford University and the University of Auckland, and a member of the R Foundation. He is the lead developer of the tidyverse, a collection of R packages, including ggplot2 and dplyr, designed to support data science. He is also the author of R for Data Science (with Garrett Grolemund), R Packages, and ggplot2: Elegant Graphics for Data Analysis.

Book R for Data Science

    Book Details:
  • Author : Hadley Wickham
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2016-12-12
  • ISBN : 1491910364
  • Pages : 521 pages

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Book Advanced Approaches in Turbulence

Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis

Book Advanced Algorithms and Data Structures

Download or read book Advanced Algorithms and Data Structures written by Marcello La Rocca and published by Simon and Schuster. This book was released on 2021-08-10 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization