EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approximability of Optimization Problems through Adiabatic Quantum Computation

Download or read book Approximability of Optimization Problems through Adiabatic Quantum Computation written by William Cruz-Santos and published by Springer Nature. This book was released on 2022-05-31 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms. Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies

Book On Quantum Simulators and Adiabatic Quantum Algorithms

Download or read book On Quantum Simulators and Adiabatic Quantum Algorithms written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small - which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover's search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.

Book Molecular Quantum Dynamics

    Book Details:
  • Author : Fabien Gatti
  • Publisher : Springer Science & Business Media
  • Release : 2014-04-09
  • ISBN : 3642452906
  • Pages : 281 pages

Download or read book Molecular Quantum Dynamics written by Fabien Gatti and published by Springer Science & Business Media. This book was released on 2014-04-09 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Book Quantum Computers  Algorithms  and Chaos

Download or read book Quantum Computers Algorithms and Chaos written by Giulio Casati and published by IOS Press. This book was released on 2006 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Information Processing and Communication (QIPC) has the potential to revolutionize many areas of science and technology. This book covers the following topics: introduction to quantum computing; quantum logic, information and entanglement; quantum algorithms; error-correcting codes for quantum computations; quantum communication; and more."

Book Quantum Computer Systems

Download or read book Quantum Computer Systems written by Yongshan Ding and published by Springer Nature. This book was released on 2022-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.

Book Quantum Computer Science

    Book Details:
  • Author : N. David Mermin
  • Publisher : Cambridge University Press
  • Release : 2007-08-30
  • ISBN : 1139466801
  • Pages : 236 pages

Download or read book Quantum Computer Science written by N. David Mermin and published by Cambridge University Press. This book was released on 2007-08-30 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University.

Book On Quantum Simulators and Adiabatic Quantum Algorithms

Download or read book On Quantum Simulators and Adiabatic Quantum Algorithms written by Sarah Mostame and published by . This book was released on 2008 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Classical Simulation of Noisy Quantum Computers

Download or read book The Classical Simulation of Noisy Quantum Computers written by Nikhil Ratanje and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we explored the consequences of considering generalised non-quantum notions of entanglement in the classical simulation of noisy quantum computers where the available measurements are restricted. Such noise rates serve as upper bounds to fault tolerance thresholds. These measurement restrictions come about either through imperfection, and/or by design to some limited set. By considering sets of operators that return positive measurement outcome probabilities for the restricted measurements, one can construct new single particle state spaces containing quantum and non-quantum operators. These state spaces can then be used with a modified version of Harrow and Nielsen's classical simulation algorithm to efficiently simulate noisy quantum computers that are incapable of generating generalised entanglement with respect to the new state spaces. Through this approach we developed alternative methods of classical simulation, strongly connected to the study of non-local correlations, in that we constructed noisy quantum computers capable of performing non-Clifford operations and could generate some forms of multiparty quantum entanglement, but were classical in that they could be efficiently classically simulated and could not generate non-local statistics. We focused on magic state quantum computers (that are limited to only Pauli measurements), with ideal local gates, but noisy control-Pauli Z gates, and calculated the noise needed to ensure the control-Z gates became incapable of generating generalised entanglment for a variety of noise models and state space choice, with the aim of finding an optimal single particle state space requiring the least noise to remove the generalised entanglement. The state spaces were required to always return valid measurement probabilities, this meant they also had had to have octahedral symmetry to ensure local gates did not take states outside the state space. While we able to find to the optimal choice for highly imperfect measurements, were we unable to find the optimal in all cases. Our best candidate state space required less joint depolarising noise at [approximately equal to] 56% in comparison to noise levels of [approximately equal to] 67% required if the algorithm used quantum notions of separability. This suggests that generalised entanglement may offer more insight than quantum entanglement when discussing the power of Clifford operation based quantum computers.

Book Adiabatic Quantum Computation and Quantum Annealing

Download or read book Adiabatic Quantum Computation and Quantum Annealing written by Catherine C. McGeoch and published by Springer Nature. This book was released on 2022-06-01 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics. Table of Contents: Acknowledgments / Introduction / Adiabatic Quantum Computation / Quantum Annealing / The D-Wave Platform / Computational Experience / Bibliography / Author's Biography

Book Continuous time Quantum Algorithms  electronic Resource    Searching and Adiabatic Computation

Download or read book Continuous time Quantum Algorithms electronic Resource Searching and Adiabatic Computation written by Lawrence Mario Ioannou and published by University of Waterloo. This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important quantum algorithms is Grover's search algorithm [G96]. Quantum searching can be used to speed up the search for solutions to NP-complete problems e.g. 3SAT. Even so, the best known quantum algorithms for 3SAT are considered inefficient. Soon after Grover's discovery, Farhi and Gutmann [FG96] devised a "continuous-time analogue" of quantum searching. More recently Farhi et. al. [FGGS00] proposed a continuous-time 3SAT algorithm which invokes the adiabatic approximation [M76]. Their algorithm is difficult to analyze, hence we do not know whether it can solve typical 3SAT instances faster than Grover's search algorithm can. I begin with a review of the discrete- and continuous-time models of quantum computation. I then make precise the notion of "efficient quantum algorithms", motivating sufficient conditions for discrete- and continuous-time algorithms to be considered efficient via discussion of standard techniques for discrete-time simulation of continuous-time algorithms. After reviewing three quantum search algorithms [F00,FG96,G96], I develop the adiabatic 3SAT algorithm as a natural extension of Farhi and Gutmann's search algorithm. Along the way, I present the adiabatic search algorithm [vDMV01] and remark on its discrete-time simulation. Finally I devise a generalization of the adiabatic algorithm and prove some lower bounds for various cases of this general framework.

Book On Quantum Simulation  Quantum Random Walks and Quantum Adiabatic Optimization

Download or read book On Quantum Simulation Quantum Random Walks and Quantum Adiabatic Optimization written by Kai Chun Chang and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization of Communication in Noisy Quantum Channels

Download or read book Optimization of Communication in Noisy Quantum Channels written by and published by . This book was released on 2002 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: When quantum particles are used to transmit or process information, noise will affect the fidelity of the transmission. This project has been concerned with the analysis of mathematical models of noise for qubit channels, with the capacity of qubit channels used to transmit classical information, and with exchange errors in quantum computation. Some results were also obtained on adiabatic quantum computation.

Book Supervised Learning with Quantum Computers

Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.

Book Quantum Computation and Quantum Information

Download or read book Quantum Computation and Quantum Information written by Michael A. Nielsen and published by Cambridge University Press. This book was released on 2010-12-09 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Book An Introduction to Quantum Computing

Download or read book An Introduction to Quantum Computing written by Phillip Kaye and published by Oxford University Press. This book was released on 2007 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.

Book Nuclear Lattice Effective Field Theory

Download or read book Nuclear Lattice Effective Field Theory written by Timo A. Lähde and published by Springer. This book was released on 2019-05-07 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer begins with a brief introduction to the main ideas underlying Effective Field Theory (EFT) and describes how nuclear forces are obtained from first principles by introducing a Euclidean space-time lattice for chiral EFT. It subsequently develops the related technical aspects by addressing the two-nucleon problem on the lattice and clarifying how it fixes the numerical values of the low-energy constants of chiral EFT. In turn, the spherical wall method is introduced and used to show how improved lattice actions render higher-order corrections perturbative. The book also presents Monte Carlo algorithms used in actual calculations. In the last part of the book, the Euclidean time projection method is introduced and used to compute the ground-state properties of nuclei up to the mid-mass region. In this context, the construction of appropriate trial wave functions for the Euclidean time projection is discussed, as well as methods for determining the energies of the low-lying excitations and their spatial structure. In addition, the so-called adiabatic Hamiltonian, which allows nuclear reactions to be precisely calculated, is introduced using the example of alpha-alpha scattering. In closing, the book demonstrates how Nuclear Lattice EFT can be extended to studies of unphysical values of the fundamental parameters, using the triple-alpha process as a concrete example with implications for the anthropic view of the Universe. Nuclear Lattice Effective Field Theory offers a concise, self-contained, and introductory text suitable for self-study use by graduate students and newcomers to the field of modern computational techniques for atomic nuclei and nuclear reactions.