EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Adaptive Multilevel Monte Carlo Methods for Random Elliptic Problems

Download or read book Adaptive Multilevel Monte Carlo Methods for Random Elliptic Problems written by Evgenia Youett and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Adaptive Multi Level Monte Carlo and Stochastic Collocation Methods for Hyperbolic Partial Differential Equations with Random Data on Networks

Download or read book Adaptive Multi Level Monte Carlo and Stochastic Collocation Methods for Hyperbolic Partial Differential Equations with Random Data on Networks written by Elisa Strauch and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monte Carlo

    Book Details:
  • Author : George Fishman
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475725531
  • Pages : 721 pages

Download or read book Monte Carlo written by George Fishman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.

Book Monte Carlo Methods

    Book Details:
  • Author : Malvin H. Kalos
  • Publisher : John Wiley & Sons
  • Release : 2008-10-20
  • ISBN : 352740760X
  • Pages : 217 pages

Download or read book Monte Carlo Methods written by Malvin H. Kalos and published by John Wiley & Sons. This book was released on 2008-10-20 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Book Monte Carlo and Quasi Monte Carlo Methods

Download or read book Monte Carlo and Quasi Monte Carlo Methods written by Aicke Hinrichs and published by Springer Nature. This book was released on with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Monte Carlo Methods

    Book Details:
  • Author : Abdo Abou Jaoudé
  • Publisher : BoD – Books on Demand
  • Release : 2022-03-09
  • ISBN : 1839687592
  • Pages : 234 pages

Download or read book The Monte Carlo Methods written by Abdo Abou Jaoudé and published by BoD – Books on Demand. This book was released on 2022-03-09 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In applied mathematics, the name Monte Carlo is given to the method of solving problems by means of experiments with random numbers. This name, after the casino at Monaco, was first applied around 1944 to the method of solving deterministic problems by reformulating them in terms of a problem with random elements, which could then be solved by large-scale sampling. But, by extension, the term has come to mean any simulation that uses random numbers. Monte Carlo methods have become among the most fundamental techniques of simulation in modern science. This book is an illustration of the use of Monte Carlo methods applied to solve specific problems in mathematics, engineering, physics, statistics, and science in general.

Book Monte Carlo and Quasi Monte Carlo Methods

Download or read book Monte Carlo and Quasi Monte Carlo Methods written by Bruno Tuffin and published by Springer Nature. This book was released on 2020-05-01 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book presents the refereed proceedings of the 13th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Rennes, France, and organized by Inria, in July 2018. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

Book A Primer for the Monte Carlo Method

Download or read book A Primer for the Monte Carlo Method written by Ilya M. Sobol and published by CRC Press. This book was released on 2018-04-24 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is a numerical method of solving mathematical problems through random sampling. As a universal numerical technique, the method became possible only with the advent of computers, and its application continues to expand with each new computer generation. A Primer for the Monte Carlo Method demonstrates how practical problems in science, industry, and trade can be solved using this method. The book features the main schemes of the Monte Carlo method and presents various examples of its application, including queueing, quality and reliability estimations, neutron transport, astrophysics, and numerical analysis. The only prerequisite to using the book is an understanding of elementary calculus.

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2016-10-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

Book New Monte Carlo Methods With Estimating Derivatives

Download or read book New Monte Carlo Methods With Estimating Derivatives written by Gennadij A. Michajlov and published by VSP. This book was released on 1995-01-01 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is possible to use weighted Monte Carlo methods for solving many problems of mathematical physics (boundary value problems for elliptic equations, the Boltzmann equation, radiation transfer and diffusion equations). Weight estimates make it possible to evaluate special functionals, for example, derivatives with respect to parameters of a problem. In this book new weak conditions are presented under which the corresponding vector Monte Carlo estimates are unbiased and their variances are finite. The author has also constructed new Monte Carlo methods for solving the Helmholz equation with a nonconstant parameter, including the stationary Schrodinger equation. New results for linear and nonlinear problems are also presented. Some methods of random function simulation are considered in the special appendix. A new method of substantiating and optimizing the reccurent Monte Carlo estimates without using the Neumann series is presented in the introduction.

Book Quantification of Uncertainty  Improving Efficiency and Technology

Download or read book Quantification of Uncertainty Improving Efficiency and Technology written by Marta D'Elia and published by Springer Nature. This book was released on 2020-07-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.

Book Sparse Grids and Applications

Download or read book Sparse Grids and Applications written by Jochen Garcke and published by Springer Science & Business Media. This book was released on 2012-10-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.

Book A Primer for the Monte Carlo Method

Download or read book A Primer for the Monte Carlo Method written by Ilya M. Sobol and published by CRC Press. This book was released on 1994-05-19 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is a numerical method of solving mathematical problems through random sampling. As a universal numerical technique, the method became possible only with the advent of computers, and its application continues to expand with each new computer generation. A Primer for the Monte Carlo Method demonstrates how practical problems in science, industry, and trade can be solved using this method. The book features the main schemes of the Monte Carlo method and presents various examples of its application, including queueing, quality and reliability estimations, neutron transport, astrophysics, and numerical analysis. The only prerequisite to using the book is an understanding of elementary calculus.

Book Monte Carlo Methods

Download or read book Monte Carlo Methods written by Karl Karlovich Sabelʹfelʹd and published by Springer. This book was released on 1991-10-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with Random Walk Methods for solving multidimensional boundary value problems. Monte Carlo algorithms are constructed for three classes of problems: (1) potential theory, (2) elasticity, and (3) diffusion. Some of the advantages of our new methods as compared to conventional numerical methods are that they cater for stochasticities in the boundary value problems and complicated shapes of the boundaries.

Book Sparse Grids and Applications   Munich 2012

Download or read book Sparse Grids and Applications Munich 2012 written by Jochen Garcke and published by Springer Science & Business Media. This book was released on 2014-04-11 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse grids have gained increasing interest in recent years for the numerical treatment of high-dimensional problems. Whereas classical numerical discretization schemes fail in more than three or four dimensions, sparse grids make it possible to overcome the “curse” of dimensionality to some degree, extending the number of dimensions that can be dealt with. This volume of LNCSE collects the papers from the proceedings of the second workshop on sparse grids and applications, demonstrating once again the importance of this numerical discretization scheme. The selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures, and the range of applications extends to uncertainty quantification settings and clustering, to name but a few examples.

Book Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs

Download or read book Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs written by Assyr Abdulle (Mathematiker) and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Information based Complexity

Download or read book Information based Complexity written by Joseph Frederick Traub and published by . This book was released on 1988 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive treatment of information-based complexity, the branch of computational complexity that deals with the intrinsic difficulty of the approximate solution of problems for which the information is partial, noisy, and priced. Such problems arise in many areas including economics, physics, human and robotic vision, scientific and engineering computation, geophysics, decision theory, signal processing and control theory.