EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by J.F. Allard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Book Acoustics of Porous Media

Download or read book Acoustics of Porous Media written by Thierry Bourbié and published by Editions TECHNIP. This book was released on 1987 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational and Experimental Studies of Acoustic Waves

Download or read book Computational and Experimental Studies of Acoustic Waves written by Mahmut Reyhanoglu and published by BoD – Books on Demand. This book was released on 2018-01-04 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent studies of acoustic wave propagation through different media including the atmosphere, Earth's subsurface, complex dusty plasmas, porous materials, and flexible structures. Mathematical models of the underlying physical phenomena are introduced and studied in detail. With its seven chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent computational and experimental studies of acoustic waves. The first section consists of four chapters that focus on computational studies, while the next section is composed of three chapters that center on experimental studies.

Book Acoustic Waves in Periodic Structures  Metamaterials  and Porous Media

Download or read book Acoustic Waves in Periodic Structures Metamaterials and Porous Media written by Noé Jiménez and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Book Acoustic Waves in Porous Media

Download or read book Acoustic Waves in Porous Media written by The Anh Nguyen and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi Component Acoustic Characterization of Porous Media

Download or read book Multi Component Acoustic Characterization of Porous Media written by Karel N. van Dalen and published by Springer Science & Business Media. This book was released on 2013-01-11 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The feasibility to extract porous medium parameters from acoustic recordings is investigated. The thesis gives an excellent discussion of our basic understanding of different wave modes, using a full-waveform and multi-component approach. Focus lies on the dependency on porosity and permeability where especially the latter is difficult to estimate. In this thesis, this sensitivity is shown for interface-wave and reflected-wave modes. For each of the pseudo-Rayleigh and pseudo-Stoneley interface waves unique estimates for permeability and porosity can be obtained when impedance and attenuation are combined. The pseudo-Stoneley wave is most sensitive to permeability: both the impedance and the attenuation are controlled by the fluid flow. Also from reflected-wave modes unique estimates for permeability and porosity can be obtained when the reflection coefficients of different reflected modes are combined. In this case the sensitivity to permeability is caused by subsurface heterogeneities generating mesoscopic fluid flow at seismic frequencies. The results of this thesis suggest that estimation of in-situ permeability is feasible, provided detection is carried out with multi-component measurements. The results of this thesis argely affect geotechnical and reservoir engineering practices.

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by J.F. Allard and published by Springer. This book was released on 2012-01-07 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2014-12-08 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Book Transient Acoustic Wave Propagation in Porous Media

Download or read book Transient Acoustic Wave Propagation in Porous Media written by Zine El Abiddine and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Transient Acoustic Wave Propagation in Porous Media.

Book Acoustic Wave Propagation in Porous Media

Download or read book Acoustic Wave Propagation in Porous Media written by Altan Turgut and published by . This book was released on 1990 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Waves in Saturated Porous Media

Download or read book Acoustic Waves in Saturated Porous Media written by Krzysztof Wilmański and published by . This book was released on 2002 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Waves in Periodic Structures  Metamaterials  and Porous Media

Download or read book Acoustic Waves in Periodic Structures Metamaterials and Porous Media written by Noé Jiménez and published by Springer Nature. This book was released on 2021-11-03 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Book Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices

Download or read book Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices written by Marco G. Beghi and published by BoD – Books on Demand. This book was released on 2013-08-28 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acoustics is a mature field which enjoys a never ending youth. New developments are induced by either the search for a better understanding, or by technological innovations. Micro-fabrication techniques introduced a whole new class of microdevices, which exploit acoustic waves for various tasks, and in particular for information processing and for sensing purposes. Performance improvements are achievable by better modelling tools, able to deal with more complex configurations, and by more refined techniques of fabrication and of integration in technological systems, like wireless communications. Several chapters of this book deal with modelling and fabrication techniques for microdevices, including unconventional phenomena and configurations. But this is far from exhausting the research lines in acoustics. Theoretical analyses and modelling techniques are presented, for phenomena ranging from the detection of cracks to the acoustics of the oceans. Measurement methods are also discussed, which probe by acoustic waves the properties of widely different systems.

Book Acoustic Wave Propagation Through Porous Media

Download or read book Acoustic Wave Propagation Through Porous Media written by Theodorus Wilhelmus Geerits and published by . This book was released on 1993 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Springer Handbook of Acoustics

Download or read book Springer Handbook of Acoustics written by Thomas Rossing and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 1179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.

Book Waves with Power Law Attenuation

Download or read book Waves with Power Law Attenuation written by Sverre Holm and published by Springer. This book was released on 2019-04-15 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.