EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A semi smooth Newton method for constrained linear quadratic control problems

Download or read book A semi smooth Newton method for constrained linear quadratic control problems written by Michael Hintermüller and published by . This book was released on 2001 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Download or read book Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces written by Michael Ulbrich and published by SIAM. This book was released on 2011-01-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities, and related problems. This book provides a comprehensive presentation of these methods in function spaces, striking a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments in the field, such as state-constrained problems, and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: optimal control of nonlinear elliptic differential equations, obstacle problems, and flow control of instationary Navier-Stokes fluids. In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods.

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Andrea Manzoni and published by Springer Nature. This book was released on 2022-01-01 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.

Book Newton Type Methods for Optimization and Variational Problems

Download or read book Newton Type Methods for Optimization and Variational Problems written by Alexey F. Izmailov and published by Springer. This book was released on 2014-07-08 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.

Book Numerical Nonsmooth Optimization

Download or read book Numerical Nonsmooth Optimization written by Adil M. Bagirov and published by Springer Nature. This book was released on 2020-02-28 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem’s special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.

Book Regularized Newton Methods for Linear Quadratic Optimal Control Problems With Applications in Model Predictive Controllers

Download or read book Regularized Newton Methods for Linear Quadratic Optimal Control Problems With Applications in Model Predictive Controllers written by Björn Hüpping and published by . This book was released on 2012 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Mathematics  Numerical Analysis and Applications

Download or read book Computational Mathematics Numerical Analysis and Applications written by Mariano Mateos and published by Springer. This book was released on 2017-08-03 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this volume gathers the lecture notes of the courses of the “XVII Escuela Hispano-Francesa”, held in Gijón, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.

Book Constrained Optimization and Optimal Control for Partial Differential Equations

Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Book Domain Decomposition Methods in Science and Engineering XXVI

Download or read book Domain Decomposition Methods in Science and Engineering XXVI written by Susanne C. Brenner and published by Springer Nature. This book was released on 2023-03-15 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 26th International Conference on Domain Decomposition Methods in Science and Engineering, which was hosted by the Chinese University of Hong Kong and held online in December 2020. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2020.

Book Optimal Control of ODEs and DAEs

Download or read book Optimal Control of ODEs and DAEs written by Matthias Gerdts and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-11-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints  Regularization and Applications

Download or read book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints Regularization and Applications written by Irwin Yousept and published by Cuvillier Verlag. This book was released on 2008 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi agent Optimization

Download or read book Multi agent Optimization written by Angelia Nedić and published by Springer. This book was released on 2018-11-01 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.

Book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.

Book Reformulation  Nonsmooth  Piecewise Smooth  Semismooth and Smoothing Methods

Download or read book Reformulation Nonsmooth Piecewise Smooth Semismooth and Smoothing Methods written by Masao Fukushima and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience.

Book Numerical Methods for Optimal Control Problems

Download or read book Numerical Methods for Optimal Control Problems written by Maurizio Falcone and published by Springer. This book was released on 2019-01-26 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.

Book Advances in Global Optimization

Download or read book Advances in Global Optimization written by David Gao and published by Springer. This book was released on 2014-11-11 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization and computation of global minima and/or maxima of nonlinear, non-convex and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation and complex simulation and supply chain analysis.

Book System Modeling and Optimization

Download or read book System Modeling and Optimization written by Adam Korytowski and published by Springer. This book was released on 2009-10-27 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: rd This book constitutes a collection of extended versions of papers presented at the 23 IFIP TC7 Conference on System Modeling and Optimization, which was held in C- cow, Poland, on July 23–27, 2007. It contains 7 plenary and 22 contributed articles, the latter selected via a peer reviewing process. Most of the papers are concerned with optimization and optimal control. Some of them deal with practical issues, e. g. , p- formance-based design for seismic risk reduction, or evolutionary optimization in structural engineering. Many contributions concern optimization of infini- dimensional systems, ranging from a general overview of the variational analysis, through optimization and sensitivity analysis of PDE systems, to optimal control of neutral systems. A significant group of papers is devoted to shape analysis and opti- zation. Sufficient optimality conditions for ODE problems, and stochastic control methods applied to mathematical finance, are also investigated. The remaining papers are on mathematical programming, modeling, and information technology. The conference was the 23rd event in the series of such meetings biennially org- ized under the auspices of the Seventh Technical Committee “Systems Modeling and Optimization” of the International Federation for Information Processing (IFIP TC7).