Download or read book A Posteriori Error Estimation in Finite Element Analysis written by Mark Ainsworth and published by John Wiley & Sons. This book was released on 2011-09-28 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.
Download or read book A Posteriori Error Estimation Techniques for Finite Element Methods written by Rüdiger Verfürth and published by Oxford University Press. This book was released on 2013-04-18 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A posteriori error estimation techniques are fundamental to the efficient numerical solution of PDEs arising in physical and technical applications. This book gives a unified approach to these techniques and guides graduate students, researchers, and practitioners towards understanding, applying and developing self-adaptive discretization methods.
Download or read book Nonlinear Finite Element Analysis in Structural Mechanics written by W. Wunderlich and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rap1d development of computational capab1lities, nonl1near f1nite element analys1s 1n structural mechan1CS has become an 1mportant field of research. Its objective is the real1stic assessment of the actual behaV10r of structures by numerical methods. Th1S requires that all nonlinear effects, such as the nonl1near character1stics of the mater1al and large deformations be taken 1nto account. The act1vities in th1S f1eld be1ng worldw1de, d1rect 1nteraction between the various research groups 1S necessary to coordinate future research and to overcome the time gap between the generat10n of new results and the1r appearance 1n the 11terature. The f1rst U.S.-Germany Sympos1um was held 1n 1976 at the Massachusetts Inst1tute of Technology. Under the general to P1C "Formulat1ons and Computat1onal Algorithms in Fin1te Ele ment Analysis" 1t prov1ded an opportun1ty for about 20 re searchers from each country to present lectures, hold discus sions, and establ1sh mutual contacts. The success of th1S first sympos1um was so encourag1ng that 1t seemed natural to organ- 1ze a second bilateral meet1ng, this time 1n Germany, and to 1nv1te researchers from other European countr1es as well
Download or read book A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques written by Rüdiger Verführt and published by Springer. This book was released on 1996-07 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Finite Element Method Theory Implementation and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Download or read book Finite Elements written by Ivo Babuska and published by . This book was released on 2010-11-04 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the many books on finite elements are devoted either to mathematical theory or to engineering applications, but not to both. This book presents computed numbers which not only illustrate the theory but can only be analysed using the theory. This approach, both dual and interacting between theory and computation makes this book unique.
Download or read book Adaptive Mesh Refinement Theory and Applications written by Tomasz Plewa and published by Springer Science & Business Media. This book was released on 2005-12-20 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.
Download or read book Adaptive Finite Element Methods for Differential Equations written by Wolfgang Bangerth and published by Birkhäuser. This book was released on 2013-11-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.
Download or read book The Finite Element Method for Boundary Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2016-11-17 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.
Download or read book The Finite Element Method and Its Reliability written by Ivo Babuška and published by Oxford University Press. This book was released on 2001 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.
Download or read book Theory and Practice of Finite Elements written by Alexandre Ern and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.
Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Download or read book Accuracy Estimates and Adaptive Refinements in Finite Element Computations written by Ivo Babuška and published by John Wiley & Sons. This book was released on 1986 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains papers discussing the recent developments in adaptive methods and their applications, an area of finite elements methods applicable to the needs of civil engineering. Topics covered range from an exposition of basic theory and techniques to detailed discussions of specific applications. Adaptive approaches, and the computer assessment of the reliability of the results obtained are also examined.
Download or read book A Posteriori Estimates for Partial Differential Equations written by Sergey I. Repin and published by Walter de Gruyter. This book was released on 2008-10-31 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods.
Download or read book Finite Elements written by Dietrich Braess and published by Cambridge University Press. This book was released on 2007-04-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This definitive introduction to finite element methods was thoroughly updated for this 2007 third edition, which features important material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.
Download or read book Least Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.