EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Multi scale  Multi continuum and Multi physics Model to Simulate Coupled Fluid Flow and Geomechanics in Shale Gas Reservoirs

Download or read book A Multi scale Multi continuum and Multi physics Model to Simulate Coupled Fluid Flow and Geomechanics in Shale Gas Reservoirs written by Cong Wang and published by . This book was released on 2018 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Multi scale Multi physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir

Download or read book Advances in Multi scale Multi physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir written by Wenhui Song and published by Frontiers Media SA. This book was released on 2022-08-12 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation

Download or read book Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation written by Jun Li and published by Springer Nature. This book was released on 2019-08-28 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the kinetic theory for describing flow problems from molecular scale, hydrodynamic scale, to Darcy scale. The author presents various numerical algorithms to solve the same Boltzmann-like equation for different applications of different scales, in which the dominant transport mechanisms may differ. This book presents a concise introduction to the Boltzmann equation of the kinetic theory, based on which different simulation methods that were independently developed for solving problems of different fields can be naturally related to each other. Then, the advantages and disadvantages of different methods will be discussed with reference to each other. It mainly covers four advanced simulation methods based on the Boltzmann equation (i.e., direct simulation Monte Carlo method, direct simulation BGK method, discrete velocity method, and lattice Boltzmann method) and their applications with detailed results. In particular, many simulations are included to demonstrate the applications for both conventional and unconventional reservoirs. With the development of high-resolution CT and high-performance computing facilities, the study of digital rock physics is becoming increasingly important for understanding the mechanisms of enhanced oil and gas recovery. The advanced methods presented here have broad applications in petroleum engineering as well as mechanical engineering , making them of interest to researchers, professionals, and graduate students alike. At the same time, instructors can use the codes at the end of the book to help their students implement the advanced technology in solving real industrial problems.

Book Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

Download or read book Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation written by and published by . This book was released on 2016 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

Book Multi physics Modeling of Geomechanical Systems with Coupled Hydromechanical Behaviors

Download or read book Multi physics Modeling of Geomechanical Systems with Coupled Hydromechanical Behaviors written by Ahmad Mohamed and published by . This book was released on 2013 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geotechnical structures under realistic field conditions are usually influenced with complex interactions of coupled hydromechanical behavior of porous materials. In many geotechnical applications, however, these important coupled interactions are ignored in their constitutive models. Under coupled hydromechanical behavior, stress in porous materials causes volumetric change in strain, which causes fluid diffusion; consequently, pore pressure dissipates through the pores that results in the consolidation of porous material. The objective of this research was to demonstrate the advantages of using hydromechanical models to estimate deformation and pore water pressure of porous materials by comparing with mechanical-only models. Firstly, extensive literature survey was conducted about hydro-mechanical models based on Biot's poroelastic concept. Derivations of Biot's poroelastic equations will be presented. To demonstrate the hydromechanical effects, a numerical model of poroelastic rock materials was developed using COMSOL, a commercialized multiphysics finite element software package, and compared with the analytical model developed by Wang (2000). Secondly, a series of sensitivity analyses was conducted to correlate the effect of poroelastic parameters on the behavior of porous material. The results of the sensitivity analysis show that porosity and Biot's coefficient has dominant contribution to porous material behavior. Thirdly, a coupled hydromechanical finite element model was developed for a real-world example of embankment consolidation. The simulation results show excellent agreement to field measurements of embankment settlement data.

Book Shale

    Book Details:
  • Author : Thomas Dewers
  • Publisher : John Wiley & Sons
  • Release : 2019-10-15
  • ISBN : 1119066689
  • Pages : 318 pages

Download or read book Shale written by Thomas Dewers and published by John Wiley & Sons. This book was released on 2019-10-15 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management practices for optimized oil and gas field development Examples of economically and environmentally viable methods of hydrocarbon extraction from shale Discussion of issues relating to hydraulic fracking, carbon sequestration, and nuclear waste storage Book Review: I. D. Sasowsky, University of Akron, Ohio, September 2020 issue of CHOICE, CHOICE connect, A publication of the Association of College and Research Libraries, A division of the American Library Association, Connecticut, USA Shale has a long history of use as construction fill and a ceramic precursor. In recent years, its potential as a petroleum reservoir has generated renewed interest and intense scientific investigation. Such work has been significantly aided by the development of instrumentation capable of examining and imaging these very fine-grained materials. This timely multliauthor volume brings together 15 studies covering many facets of the related science. The book is presented in two sections: an overview and a second section emphasizing unconventional oil and gas. Topics covered include shale chemistry, metals content, rock mechanics, borehole stability, modeling, and fluid flow, to name only a few. The introductory chapter (24 pages) is useful and extensively referenced. The lead chapter to the second half of the book, "Characterization of Unconventional Resource Shales," provides a notably detailed analysis supporting a comprehensive production workflow. The book is richly illustrated in full color, featuring high-quality images, graphs, and charts. The extensive index provides depth of access to the volume. This work will be of special interest to a diverse group of investigators moving forward with understanding this fascinating group of rocks. Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.

Book Development of a Multiscale and Multiphysics Simulation Framework for Reaction diffusion convection Problems

Download or read book Development of a Multiscale and Multiphysics Simulation Framework for Reaction diffusion convection Problems written by Sudib Kumar Mishra and published by . This book was released on 2009 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reaction-diffusion-convection (R-D-C) problems are governed by wide spectrum of spatio-temporal scales associated with ranges of physical and chemical processes. Such problems are called multiscale, multiphysics problems. The challenge associated with R-D-C problems is to bridge these scales and processes as seamlessly as possible. For this purpose, we develop a wavelet-based multiscale simulation framework that couples diverse scales and physics. In a first stage we focus on R-D models. We treat the "fine" reaction-scales stochastically, with kinetic Monte Carlo (kMC). The transport via diffusion possesses larger spatio-temporal scales which are bridged to the kMC with the Compound Wavelet Matrix (CWM) formalism. Since R-D-C problems are dynamical we extend the CWM method via the dynamic-coupling of the kMC and diffusion models. The process is approximated by sequential increments, where the CWM on each increment is used as the starting point for the next, providing better exploration of phase-space. The CWM is extended to two-dimensional diffusion with a reactive line-boundary to show that the computational gain and error depends on the scale-overlap and wavelet-filtering. We improve the homogenization by a wavelet-based scheme for the exchange of information between a reactive and diffusive field by passing information along fine to coarse (up-scaling) and coarse to fine (down-scaling) scales by retaining the fine-scale statistics (higher-order moments, correlations). Critical to the success of the scheme is the identification of dominant scales. The efficiency of the scheme is compared to the homogenization and benchmark model with scale-disparity. To incorporate transport by convection, we then couple the Lattice Boltzmann Model (LBM) and kMC operating at diverse scales for flows around reactive block. Such model explores markedly different physics due to strong interplay between these time-scales. S̀mall' reaction induced temperature variations are considered for multiscale coupling of the reactions with the flow, showing the discrepancies in the evolutions and yield comparing to the conventional model. The same framework is used to study the reactions induced by hydrodynamic bubble collapse which shows the similar features of the kinetics and yield comparing to conventional models.We culminate to some problems that could be solved using the developed framework and preliminary results are presented as "proof of concept."

Book Fundamentals of Gas Shale Reservoirs

Download or read book Fundamentals of Gas Shale Reservoirs written by Reza Rezaee and published by John Wiley & Sons. This book was released on 2015-07-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations

Book Thermo Hydro Mechanical Coupling in Fractured Rock

Download or read book Thermo Hydro Mechanical Coupling in Fractured Rock written by Hans-Joachim Kümpel and published by Springer Science & Business Media. This book was released on 2003-03-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The supply and protection of groundwater, the production of hydrocarbon reservoirs, land subsidence in coastal areas, exploitation of geothermal energy, the long-term disposal of critical wastes ... What do these issues have in common besides their high socio-economic impact? They are all closely related to fluid flow in porous and/or fractured rock. As the conditions of fluid flow in many cases depend on the mechanical behavior of rocks, coupling between the liquid phase and the rock matrix can generally not be neglected. For the past five years or so, studies of rock physics and rock mechanics linked to coupling phenomena have received increased attention. In recognition of this, a Euroconference on thermo-hydro-mechanical coupling in fractured rock was held at Bad Honnef, Germany, in November 2000. Most of the twenty papers collected in this volume were presented at this meeting. The contributions lead to deeper insight in processes where such coupling is relevant.

Book High Order Modeling of Applied Multi Physics Phenomena

Download or read book High Order Modeling of Applied Multi Physics Phenomena written by and published by . This book was released on 2009 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Report developed under STTR contract for topic AF08-T023: High-Order Modeling of Applied Multi-Physics Phenomena. This objective of this Phase 1 work was to establish the feasibility of constructing a simulation approach for multi-physics phenomena based on Discontinuous Galerkin (DG) discretizations using high-order accurate approximations (up to 6th order accurate). Techniques were developed, implemented and demonstrated for efficiently and accurately discretizing the full Navier-Stokes equations, for robustly capturing shocks at high order, for extending DG methods to problems with moving meshes, and for incorporating adjoint-based techniques for robust adaptive error control and for design optimization. Furthermore, these techniques were applied to both fluid flow problems, as well as electromagnetic scattering problems, and benchmarked alongside an existing production simulation tool for fluid dynamics problems. The results obtained in this work have demonstrated key capabilities with high-order DG discretizations which are instrumental for extending these methods to complex three-dimensional multiphysics production simulation capabilities with complex geometries.

Book Calibration and Validation of Granular Continuum Models from Particle Data

Download or read book Calibration and Validation of Granular Continuum Models from Particle Data written by Stefan Luding and published by Elsevier. This book was released on 2017-11-01 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calibration and Validation of Granular Continuum Models from Particle Data: Bridging the Micro-Macro Gap reviews recent advances in the field and describes how to obtain continuum fields from particle level data. After a review of several methods, it focuses on one method, coarse-graining, and demonstrates the power of this method via various examples of granular continuum models, e.g., for shallow and segregating flows. Presents the coarse-graining method to overcome accurate result challenges by applying a local smoothing kernel with a well-defined smoothing length that automatically generates fields satisfying the continuum equations Presents a very flexible solution that can be extended to complex situations, such as two-phase flows and situations with complex external boundaries Shows readers how to apply such methods to calibrate and validate some of the most common granular flow models

Book Continuum Mechanics and Applications in Geophysics and the Environment

Download or read book Continuum Mechanics and Applications in Geophysics and the Environment written by Brian Straughan and published by Springer. This book was released on 2010-12-08 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics covered include soil mechanics and porous media, glacier and ice dynamics, climatology and lake physics, climate change as well as numerical algorithms. The book, written by well-known experts, addresses researchers and students interested in physical aspects of our environment.

Book Naturally Fractured Reservoirs

Download or read book Naturally Fractured Reservoirs written by Roberto Aguilera and published by PennWell Books. This book was released on 1980 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.

Book Special Issue on Stabilized  Multiscale  and Multiphysics in Fluid Mechanics

Download or read book Special Issue on Stabilized Multiscale and Multiphysics in Fluid Mechanics written by Mini Symposium on Advances and Challenges on Flow Simulation and Modeling: Fundamental and Enabling Technologies. 2005, Orlando, Fla.. and published by . This book was released on 2009 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Numerical Techniques for Multiscale Modeling of Thermally Driven Gas Flows with Application to Thermal Sensing Atomic Force Microscopy

Download or read book Efficient Numerical Techniques for Multiscale Modeling of Thermally Driven Gas Flows with Application to Thermal Sensing Atomic Force Microscopy written by Nathan Daniel Masters and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The modeling of Micro- and NanoElectroMechanical Systems (MEMS and NEMS) requires new computational techniques that can deal efficiently with geometric complexity and scale dependent effects that may arise. Reduced feature sizes increase the coupling of physical phenomena and noncontinuum behavior, often requiring models based on molecular descriptions and/or first principles. Furthermore, noncontinuum effects are often localized to small regions of (relatively) large systemsprecluding the global application of microscale models due to computational expense. Multiscale modeling couples efficient continuum solvers with detailed microscale models to providing accurate and efficient models of complete systems. This thesis presents the development of multiscale modeling techniques for nonequilibrium microscale gas phase phenomena, especially thermally driven microflows. Much of this focuses on improving the ability of the Information Preserving DSMC (IP-DSMC) to model thermally driven flows. The IP-DSMC is a recent technique that seeks to accelerate the solution of direct simulation Monte Carlo (DSMC) simulations by preserving and transporting certain macroscopic quantities within each simulation molecules. The primary contribution of this work is the development of the Octant Splitting IP-DSMC (OSIP-DSMC) which recovers previously unavailable information from the preserved quantities and the microscopic velocities. The OSIP-DSMC can efficiently simulate flow fields induced by nonequilibrium systems, including phenomena such as thermal transpiration. The OSIP-DSMC provides an efficient method to explore rarefied gas transport phenomena which may lead to a greater understanding of these phenomena and new concepts for how these may be utilized in practical engineering systems. Multiscale modeling is demonstrated utilizing the OSIP-DSMC and a 2D BEM solver for the continuum (heat transfer) model coupled with a modified Alternating Schwarz coupling scheme. An interesting application for this modeling technique is Thermal Sensing Atomic Force Microscopy (TSAFM). TSAFM relies on gas phase heat transfer between heated cantilever probes and the scanned surface to determine the scan height, and thus the surface topography. Accurate models of the heat transfer phenomena are required to correctly interpret scan data. This thesis presents results demonstrating the effect of subcontinuum heat transfer on TSAFM operation and explores the mechanical effects of the Knudsen Force on the heated cantilevers.

Book Essentials of Multiphase Flow and Transport in Porous Media

Download or read book Essentials of Multiphase Flow and Transport in Porous Media written by George F. Pinder and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the fundamental concepts that underlie the physics of multiphase flow and transport in porous media with the information in Essentials of Multiphase Flow in Porous Media, which demonstrates the mathematical-physical ways to express and address multiphase flow problems. Find a logical, step-by-step introduction to everything from the simple concepts to the advanced equations useful for addressing real-world problems like infiltration, groundwater contamination, and movement of non-aqueous phase liquids. Discover and apply the governing equations for application to these and other problems in light of the physics that influence system behavior.