Download or read book Basic Quadratic Forms written by Larry J. Gerstein and published by American Mathematical Soc.. This book was released on 2008-01-01 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The arithmetic theory of quadratic forms is a rich branch of number theory that has had important applications to several areas of pure mathematics - particularly group theory and topology - as well as to cryptography and coding theory. This book is a self-contained introduction to quadratic forms that is based on graduate courses the author has taught many times. It leads the reader from foundation material up to topics of current research interest - with special attention to the theory over the integers and over polynomial rings in one variable over a field - and requires only a basic background in linear and abstract algebra as a prerequisite. Whenever possible, concrete constructions are chosen over more abstract arguments. The book includes many exercises and explicit examples, and it is appropriate as a textbook for graduate courses or for independent study. To facilitate further study, a guide to the extensive literature on quadratic forms is provided.
Download or read book Quaternion Algebras written by John Voight and published by Springer Nature. This book was released on 2021-06-28 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Download or read book Rational Quadratic Forms written by J. W. S. Cassels and published by Courier Dover Publications. This book was released on 2008-08-08 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.
Download or read book The Algebraic and Geometric Theory of Quadratic Forms written by Richard S. Elman and published by American Mathematical Soc.. This book was released on 2008-07-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.
Download or read book Introduction to Quadratic Forms written by Onorato Timothy O’Meara and published by Springer. This book was released on 2013-12-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quadratic and Hermitian Forms written by W. Scharlau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.
Download or read book Arithmetic of Quadratic Forms written by Goro Shimura and published by Springer Science & Business Media. This book was released on 2010-08-09 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
Download or read book Quadratic Forms and Their Applications written by Eva Bayer-Fluckiger and published by American Mathematical Soc.. This book was released on 2000 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Download or read book Quadratic Forms in Infinite Dimensional Vector Spaces written by Herbert Gross and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" ~O- forms") . Certain among the resul ts included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X, XII where I in clude results contained in the Ph.D.theses by my students w. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of ~ -dimensional 0 spaces ideally serves the purpose. First, these spaces show a large nurober of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional Situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension ~O it is easy to see, in a given case, wheth er topological language is appropriate or not) .
Download or read book Computational Geometry of Positive Definite Quadratic Forms written by Achill Schurmann and published by American Mathematical Soc.. This book was released on 2009 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.
Download or read book The Algebraic Theory of Quadratic Forms written by Tsit-Yuen Lam and published by Addison-Wesley. This book was released on 1980 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Analysis of Linear Partial Differential Operators III written by Lars Hörmander and published by Springer Science & Business Media. This book was released on 2007-03-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987.
Download or read book Bilinear Algebra written by Kazimierz Szymiczek and published by CRC Press. This book was released on 1997-09-05 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Download or read book Quadratic Forms and Their Classification by Means of Invariant factors written by Thomas John I'Anson Bromwich and published by . This book was released on 1906 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Linear Algebra written by Stephen Andrilli and published by Academic Press. This book was released on 2010-02-04 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available
Download or read book Weil s Conjecture for Function Fields written by Dennis Gaitsgory and published by Princeton University Press. This book was released on 2019-02-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil’s conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil’s conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting l-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil’s conjecture. The proof of the product formula will appear in a sequel volume.
Download or read book Quadratic and Hermitian Forms written by McMaster University and published by American Mathematical Soc.. This book was released on 1984 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).