EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 0 6613  Evaluate Binder and Mixture Aging for Warm Mix Asphalt

Download or read book 0 6613 Evaluate Binder and Mixture Aging for Warm Mix Asphalt written by Charles J. Glover and published by . This book was released on 2013 with total page 2 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluation of Binder Aging and Its Influence in Aging of Hot Mix Asphalt Concrete

Download or read book Evaluation of Binder Aging and Its Influence in Aging of Hot Mix Asphalt Concrete written by Charles J. Glover and published by . This book was released on 2014 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Developments in Pavement Engineering

Download or read book Recent Developments in Pavement Engineering written by Sherif Badawy and published by Springer Nature. This book was released on 2019-11-01 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together scientific experts in different areas that contribute to the design, analysis, and performance of sustainable pavements. This book also contributes to transportation engineering challenges and solutions, evaluate the state of the art, identify the shortcomings and opportunities for research, and promote the interaction with the industry. In particular, scientific topics that are addressed in this book include the use of different waste and recycled materials to improve pavement performance, pavement maintenance and rehabilitation, urban heat island due to transportation infrastructure and its mitigation techniques, machine learning applications in the prediction of pavement distresses, and analysis of pavement overlay.

Book Warm mix Asphalt Study

Download or read book Warm mix Asphalt Study written by Frank Farshidi and published by . This book was released on 2013 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures

Download or read book A Comparison of Warm Asphalt Binder Aging with Laboratory Aging Procedures written by Tejash Gandhi and published by . This book was released on 2010 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Warm asphalt has been gaining increasing popularity in recent years; however there are several characteristics about warm asphalt that are still unknown. While several studies have been conducted to study the performance of warm asphalt mixtures, aging characteristics of warm mix asphalt (WMA) binders are not known in great detail. This paper presents the results of a limited study to evaluate the aging characteristics of two WMA binders artificially aged in the rolling thin film oven (RTFO) and the pressure aging vessel and comparing them with binder extracted from freshly prepared and artificially aged warm asphalt mixtures. RTFO aging was performed at 163°C and a lower temperature to simulate warm asphalt aging. Tests on binders aged in the laboratory and binders extracted from freshly mixed and aged mixtures indicated that the WMA binders extracted from WMA mixtures had significantly lower viscosities and G*/sin ? compared to binders extracted from hot mix asphalt (HMA) and binders aged in the RTFO at 163°C (325°F). This indicates that the lower mixing and compaction temperatures reduce the aging of the warm asphalt binders. Also, binders extracted from WMA had significantly lower creep stiffness values and significantly higher m-values compared to warm asphalt binders aged in the RTFO at 163°C (325°F) and binders extracted from HMA. Binders containing WMA additives did not have higher G* sin ? values, indicating that the warm asphalt additives do not negatively affect the fatigue properties of the binders. Gel permeation chromatography analysis indicated that the addition of the warm asphalt additives did not have any significant effect on the %LMS of the binders used in this study.

Book Evaluation of Short Term Aging Effect of Hot Mix Asphalt Due to Elevated Temperatures and Extended Aging Time

Download or read book Evaluation of Short Term Aging Effect of Hot Mix Asphalt Due to Elevated Temperatures and Extended Aging Time written by Rubben Lolly and published by . This book was released on 2013 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.

Book Evaluation of Warm Mix Asphalt Technologies with Respect to Binder Aging and Emissions

Download or read book Evaluation of Warm Mix Asphalt Technologies with Respect to Binder Aging and Emissions written by Faramarz Farshidi and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years Warm Mix Asphalt (WMA) technologies have been used to modify asphalt binders, with the following objectives: to decrease production and construction temperatures, reduce fumes and emissions, increase haul distance, and improve the workability of the mix. Reduced temperatures at the plant and during laydown and compaction are hypothesized to positively impact long-term oxidative aging behavior due to less oxidation/aging and result in less emissions during production and construction due to reduced production and construction temperatures. The purpose of this investigation was to quantify these improvements with respect to long-term oxidative aging in the field and environmental benefits with respect to volatile organic compounds, semi-volatile organic compounds and poly cyclic aromatic hydrocarbons in order to confirm or deny this hypothesis. This research evaluated the potential durability of WMA and Rubberized Warm Mix Asphalt (R-WMA) binders with respect to long-term aging through characterization of field-aged binders extracted and recovered from field cores. The results were compared to the control conventional Hot Mix Asphalt (HMA) and Rubberized Hot Mix Asphalt (R-HMA) samples. Binders were extracted and recovered from thirteen different test sections and a total of seven different WMA technologies were evaluated in this study. The Dynamic Shear Rheometer (DSR) was used to evaluate the rheological properties of the binders at high temperatures with respect to rutting performance in the field. The Bending Beam Rheometer (BBR) was used to characterize low temperature properties of the binder samples. A new testing procedure was developed to measure and characterize the rheological properties of the R-HMA and R-WMA binders with respect to performance-related properties in the field. The rheological results indicated that depending on the WMA technology used, the addition of WMA technologies and reduced production and compaction temperatures result in increase or decrease rutting resistance performance for WMA and R-WMA binders with respect to permanent deformation at high temperatures in the field. Both WMA and R-WMA binders studied meet the established thermal cracking criteria with respect to low temperature cracking in the field. The aging kinetics curves for WMA-treated binders are parallel to the control binders and the addition of WMA technologies including organic, chemical and mechanical foaming technologies studied in this research did not result in a different aging kinetics trend with respect to long-term aging in the field. A portable "flux" chamber was designed and fabricated to capture and directly measure emissions during paving operations. Emissions were collected in activated charcoal sorbent tubes for characterizing volatile organic compounds and semi-volatile organic compounds. XAD-2 resin tubes and filters were used to capture the gaseous phase and particulate phase of the PAH compounds, respectively. A reliable analytical method was developed to identify and quantify alkane emissions using gas chromatography mass spectrometry (GC/MS) in the laboratory. A separate method was developed for identification and characterization of trace level PAH compounds of the asphalt fumes. The results demonstrated that the warm mix asphalt technology type, plant mixing temperature and level of compaction significantly influence the emission characteristics throughout paving operations. Moreover, the emissions kinetics indicated that the majority of the reactive organic gases are volatilized in the first hour after sampling initiation (immediately after production and before compaction). To better understand and identify any chemical composition changes of the binder due to WMA technologies, nuclear magnetic resonance spectroscopy (NMR) was used for understanding structural complexities of HMA and WMA binder molecules. Qualitative analysis of both carbon and hydrogen atoms with HMA and WMA binders showed that the molecular structures of the binders are not significantly changed by the effect of WMA technologies.

Book Influence of Warm Mix Asphalt on Aging of Asphalt Binders

Download or read book Influence of Warm Mix Asphalt on Aging of Asphalt Binders written by Ala R. Abbas and published by . This book was released on 2014 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance Evaluation of Warm Mix Recycled Asphalt Binders After Long Term Aging

Download or read book Performance Evaluation of Warm Mix Recycled Asphalt Binders After Long Term Aging written by Qiang Li and published by . This book was released on 2019 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study evaluates the pavement performance evolution of warm-mix recycled asphalt binders during the secondary service period. Warm-mix recycled asphalt binders with various long-term aging levels and recycling plans were produced by the laboratory simulation method. Conventional physical properties tests, the dynamic shear rheometer test, and the bending beam rheometer test were conducted to measure the performance of recycled binders. Effects of the aging level and recycling plan on the resistance to rutting, fatigue cracking, and low temperature cracking were investigated by statistical methods. It was found that after secondary long-term aging, recycled binders are more resistant to rutting, while they are less resistant to fatigue and low temperature cracking. The modified aging kinetic model can be used to accurately characterize the effect of secondary aging time on rutting or fatigue factors for recycled binders. The resistance of aged binders to fatigue and low temperature cracking is obviously improved by adding the warm mix asphalt additive. By comparison, using styrene butadiene rubber latex enhances the binder performance in almost all aspects. The aging level has a more significant effect than the recycling plan for all performance parameters.

Book Recommendations and Guidelines for the Use of WMA Mixtures

Download or read book Recommendations and Guidelines for the Use of WMA Mixtures written by Zelalem Arega and published by . This book was released on 2012 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this research study was to evaluate the influence of warm mix additives on the rheology and performance characteristics of asphalt binders with emphasis on the affects of long-term aging and use of recycled asphalt binder. In order to achieve this objective the asphalt binders were first screened based on their chemical makeup. The selected asphalt binders were combined with different warm mix asphalt additives and evaluated for their mechanical properties. Subsets of these binders were also used to evaluate the affect of long-term aging and the affect of using recycled asphalt binder on performance characteristics. Tests were also conducted using a limited number of sand-asphalt mortars and full asphalt mixtures to further corroborate the findings from the binder study.

Book Influence of Aging on Foamed Warm Mix Asphalt

Download or read book Influence of Aging on Foamed Warm Mix Asphalt written by Sunday Akinbowale and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the years, the use of warm mix in pavement structures has continued to gain increasing attention in United States because of its implicit advantages over the traditional hot mix. This has necessitated increased research efforts into understanding different aspects of its behaviour and performance. Aging of asphalt is particularly of much importance because it leads to several problems such as pavement rutting, fatigue cracking and thermal cracking. The aging that occurs during mixing and compaction is commonly referred to as short term aging while the aging that occurs during the pavement service life is called long term aging. The main reason for aging in binders is oxidation and binders become stiffer due to oxidation. Several research projects have been carried out on investigating the aging behavior of warm mix asphalt (WMA) produced by different chemical additives. But no major study has been conducted to understand the aging behavior of foamed WMA. Therefore, this study characterizes the aging behavior of foamed (WMA) as it compares to the traditional hot mix asphalt (HMA) using the Dynamic Shear Rheometer (DSR), Fourier Transforms Infrared Spectroscopy (FTIR), and Gel Permeation Chromatography (GPC) tests. Investigation of the effect of extraction and recovery with trichloroethylene on the stiffness of binders was initially carried out. In addition to preparation of mixtures, aging of binders (RTFO and PAV) and aging of mixtures (STOA and LTOA) being simulated in the laboratory using PG 70-22M and PG 64-22 binder grades, field cores were also obtained from test sections which had been in service for five years. Binders were extracted and recovered from both laboratory and field samples for subsequent physical and chemical tests. These results were analysed and used to evaluate the aging behavior of foamed WMA as it compares to HMA. It was observed that extraction and recovery procedure with trichloroethylene had minimal effect on PG 70-22M binders while it had a reductive effect on rutting and fatigue parameter values of PG 64-22 binders at different levels of aging. Both foamed WMA and HMA for PG 70-22M responded similarly to field and laboratory-simulated aging conditions. But for PG 64-22 binders, foamed WMA was found to be less susceptible to aging than the traditional HMA. Therefore, it implies that when the foamed warm mix technology is used, it may be expected to have a better performance in fatigue cracking but more susceptible to rutting or permanent deformation that takes place in pavement early years when compared to the traditional Hot Mix Asphalt.

Book Aging Characterization of Foamed Warm Mix Asphalt

Download or read book Aging Characterization of Foamed Warm Mix Asphalt written by Mir Shahnewaz Arefin and published by . This book was released on 2015 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study evaluated the aging characteristic of foamed warm mix asphalt (WMA) produced by water injection in comparison to traditional hot mix asphalt (HMA). Four types of asphalt binders (PG 64-22, PG 64-28, PG 70-22, PG 76-22) were used in the preparation of the foamed WMA and HMA mixtures. All mixtures were prepared using limestone aggregates with a nominal maximum aggregate size (NMAS) of 12.5 mm that met the Ohio Department of Transportation (ODOT) Construction and Material Specifications (C&MS) for Item 442 (Superpave Asphalt Concrete).The short-term and long-term aging of the asphalt binders were simulated using the rolling thin film oven (RTFO) and the pressure aging vessel (PAV), respectively, while the short-term and long-term aging of the laboratory-prepared asphalt mixtures were simulated according to AASHTO R 30 (Mixture Conditioning of Hot Mix Asphalt).The dynamic shear rheometer (DSR) was used to characterize the viscoelastic behavior of the unaged, RTFO-aged, and PAV-aged asphalt binders, while the dynamic modulus (lE*l) test was used to characterize the viscoelastic behavior of the short-term and long-term aged foamed WMA and HMA mixtures.In addition, the mechanistic-empirical pavement design guide (MEPDG) global aging model was used to predict the effect of aging on the dynamic modulus (lE*l) of foamed WMA and HMA mixtures, and the MEPDG global aging model predictions were compared to dynamic modulus (lE*l) test results obtained in the laboratory for both asphalt mixtures. By comparing the DSR test results following RTFO and PAV to those obtained for the unaged asphalt binders, it was observed that PG 64-22 was the least susceptible to aging followed by PG 70-22, PG 76-22, and PG 64-28. Similar trends were also observed from the dynamic modulus test, where little difference was noticed between the short-term and long-term aged specimens prepared using PG 64-22 for both foamed WMA and HMA mixtures.The dynamic modulus test results also revealed slightly lower lE*l values for foamed WMA mixtures in comparison to traditional HMA mixtures. This indicates that foamed WMA mixtures are slightly more susceptible to rutting than HMA mixtures. However, by comparing the dynamic modulus of the long-term aged specimens to the short-term aged specimens, it was observed that the increase in stiffness for the foamed WMA mixtures was less than that for the traditional HMA mixtures. This indicates that foamed WMA mixtures are less susceptible to aging and subsequently fatigue cracking than HMA mixtures.Finally, by the comparing the MEPDG global aging model predictions to the dynamic modulus test results for both foamed WMA and HMA mixtures, it was observed that the MEPDG global aging model provided more reasonable predictions, especially at higher frequencies, but overestimated or underestimated the dynamic modulus at lower frequencies. This was observed for both foamed WMA and HMA mixtures, which suggests that this model can be used for both types of mixtures.

Book Advanced Asphalt Materials and Paving Technologies

Download or read book Advanced Asphalt Materials and Paving Technologies written by Zhanping You and published by MDPI. This book was released on 2018-05-04 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Advanced Asphalt Materials and Paving Technologies" that was published in Applied Sciences

Book Toxicological Profile for N nitrosodimethylamine

Download or read book Toxicological Profile for N nitrosodimethylamine written by and published by . This book was released on 1989 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: