Download or read book Wigner Type Theorems for Hilbert Grassmannians written by Mark Pankov and published by Cambridge University Press. This book was released on 2020-01-16 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the geometric approach to Wigner's theorem and its role in quantum mechanics.
Download or read book Modern Trends in Algebra and Representation Theory written by David Jordan and published by Cambridge University Press. This book was released on 2023-08-17 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expanding upon the material delivered during the LMS Autumn Algebra School 2020, this volume reflects the fruitful connections between different aspects of representation theory. Each survey article addresses a specific subject from a modern angle, beginning with an exploration of the representation theory of associative algebras, followed by the coverage of important developments in Lie theory in the past two decades, before the final sections introduce the reader to three strikingly different aspects of group theory. Written at a level suitable for graduate students and researchers in related fields, this book provides pure mathematicians with a springboard into the vast and growing literature in each area.
Download or read book An Indefinite Excursion in Operator Theory written by Aurelian Gheondea and published by Cambridge University Press. This book was released on 2022-07-28 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a modern, readable introduction to spaces with indefinite inner product and their operator theory.
Download or read book Maurer Cartan Methods in Deformation Theory written by Vladimir Dotsenko and published by Cambridge University Press. This book was released on 2023-08-31 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering an exceptional range of topics, this text provides a unique overview of the Maurer-Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory.
Download or read book The Logical Approach to Automatic Sequences written by Jeffrey Shallit and published by Cambridge University Press. This book was released on 2022-09-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
Download or read book Bounded Cohomology and Simplicial Volume written by Caterina Campagnolo and published by Cambridge University Press. This book was released on 2022-11-30 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of bounded cohomology and simplicial volume covering the basics of the subject and recent research directions.
Download or read book Algebraic Combinatorics and the Monster Group written by Alexander A. Ivanov and published by Cambridge University Press. This book was released on 2023-08-17 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.
Download or read book Surveys in Combinatorics 2024 written by Felix Fischer and published by Cambridge University Press. This book was released on 2024-06-13 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains surveys of current research directions in combinatorics written by leading researchers in their fields.
Download or read book Groups and Graphs Designs and Dynamics written by R. A. Bailey and published by Cambridge University Press. This book was released on 2024-05-30 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.
Download or read book C Algebraic Geometry with Corners written by Kelli Francis-Staite and published by Cambridge University Press. This book was released on 2023-12-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes, 'C∞-schemes', which allow differential geometers to study a huge range of singular spaces, including 'infinitesimals' and infinite-dimensional spaces. These are applied in synthetic differential geometry, and derived differential geometry, the study of 'derived manifolds'. Differential geometers also study manifolds with corners. The cube is a 3-dimensional manifold with corners, with boundary the six square faces. This book introduces 'C∞-schemes with corners', singular spaces in differential geometry with good notions of boundary and corners. They can be used to define 'derived manifolds with corners' and 'derived orbifolds with corners'. These have applications to major areas of symplectic geometry involving moduli spaces of J-holomorphic curves. This work will be a welcome source of information and inspiration for graduate students and researchers working in differential or algebraic geometry.
Download or read book Discrete Quantum Walks on Graphs and Digraphs written by Chris Godsil and published by Cambridge University Press. This book was released on 2022-12-31 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the mathematics arising from discrete quantum walks in this introduction to a rapidly developing area.
Download or read book Elliptic Regularity Theory by Approximation Methods written by Edgard A. Pimentel and published by Cambridge University Press. This book was released on 2022-06-30 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs – such as the Krylov–Safonov and Evans–Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ – and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described.
Download or read book Integrable Systems and Algebraic Geometry Volume 2 written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.
Download or read book Integrable Systems and Algebraic Geometry written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-03-02 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Download or read book Integrable Systems and Algebraic Geometry Volume 1 written by Ron Donagi and published by Cambridge University Press. This book was released on 2020-04-02 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.
Download or read book Invariance of Modules under Automorphisms of their Envelopes and Covers written by Ashish K. Srivastava and published by Cambridge University Press. This book was released on 2021-03-18 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of invariance of modules under automorphisms of their envelopes and covers has opened up a whole new direction in the study of module theory. It offers a new perspective on generalizations of injective, pure-injective and flat-cotorsion modules beyond relaxing conditions on liftings of homomorphisms. This has set off a flurry of work in the area, with hundreds of papers using the theory appearing in the last decade. This book gives the first unified treatment of the topic. The authors are real experts in the area, having played a major part in the breakthrough of this new theory and its subsequent applications. The first chapter introduces the basics of ring and module theory needed for the following sections, making it self-contained and suitable for graduate students. The authors go on to develop and explain their tools, enabling researchers to employ them, extend and simplify known results in the literature and to solve longstanding problems in module theory, many of which are discussed at the end of the book.
Download or read book Stacks Project Expository Collection written by Pieter Belmans and published by Cambridge University Press. This book was released on 2022-09-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.