EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Wide Bandgap  SiC GaN  Power Devices Characterization and Modeling

Download or read book Wide Bandgap SiC GaN Power Devices Characterization and Modeling written by Ke Li and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe.

Book Characterization of Wide Bandgap Power Semiconductor Devices

Download or read book Characterization of Wide Bandgap Power Semiconductor Devices written by Fei (Fred) Wang and published by . This book was released on 2018 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an authoritative overview of Wide Bandgap (WBG) device characterization providing essential tools to assist the reader in performing both static and dynamic characterization of WBG devices, particularly those based on using silicon carbide (SiC) and gallium nitride (GaN) power semiconductors.

Book Wide Bandgap Based Devices

Download or read book Wide Bandgap Based Devices written by Farid Medjdoub and published by MDPI. This book was released on 2021-05-26 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Book Characterization of Wide Bandgap Power Semiconductor Devices

Download or read book Characterization of Wide Bandgap Power Semiconductor Devices written by Fei Wang and published by Institution of Engineering and Technology. This book was released on 2018 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of modern power electronics converters are power semiconductor switching devices. The emergence of wide bandgap (WBG) semiconductor devices, including silicon carbide and gallium nitride, promises power electronics converters with higher efficiency, smaller size, lighter weight, and lower cost than converters using the established silicon-based devices. However, WBG devices pose new challenges for converter design and require more careful characterization, in particular due to their fast switching speed and more stringent need for protection. Characterization of Wide Bandgap Power Semiconductor Devices presents comprehensive methods with examples for the characterization of this important class of power devices. After an introduction, the book covers pulsed static characterization; junction capacitance characterization; fundamentals of dynamic characterization; gate drive for dynamic characterization; layout design and parasitic management; protection design for double pulse test; measurement and data processing for dynamic characterization; cross-talk consideration; impact of three-phase system; and topology considerations.

Book Device Characterization and Modeling of Large Size GaN HEMTs

Download or read book Device Characterization and Modeling of Large Size GaN HEMTs written by Jaime Alberto Zamudio Flores and published by kassel university press GmbH. This book was released on 2012-08-21 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a comprehensive modeling strategy for advanced large-size AlGaN/GaN HEMTs. A 22-element equivalent circuit with 12 extrinsic elements, including 6 capacitances, serves as small-signal model and as basis for a large-signal model. ANalysis of such capacitances leads to original equations, employed to form capacitance ratios. BAsic assumptions of existing parameter extractions for 22-element equivalent circuits are perfected: A) Required capacitance ratios are evaluated with device's top-view images. B) Influences of field plates and source air-bridges on these ratios are considered. The large-signal model contains a gate charge's non-quasi-static model and a dispersive-IDS model. THe extrinsic-to-intrinsic voltage transformation needed to calculate non-quasi-static parameters from small-signal parameters is improved with a new description for the measurement's boundary bias points. ALl IDS-model parameters, including time constants of charge-trapping and self-heating, are extracted using pulsed-DC IV and IDS-transient measurements, highlighting the modeling strategy's empirical character.

Book Wide Bandgap Semiconductor Electronics And Devices

Download or read book Wide Bandgap Semiconductor Electronics And Devices written by Uttam Singisetti and published by World Scientific. This book was released on 2019-12-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.

Book Modeling and Characterization of Circuit Level Transients in Wide Bandgap Devices

Download or read book Modeling and Characterization of Circuit Level Transients in Wide Bandgap Devices written by Naga Babu Koganti and published by . This book was released on 2018 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide bandgap devices (GaN) are an enabling technology for high frequency and high efficiency power electronics. Especially, the combination of low on-resistance and high breakdown voltages relates to high power-density capabilities of GaN devices and makes them a potential alternative for silicon devices in high power conversion applications. Also, GaN devices are intrinsically very fast with low switching losses due to high saturation velocities and can achieve higher efficiencies in hard switching applications. On the contrary, low inherent capacitance makes them more vulnerable to high dv/dt transitions and can cause undesired circuit level issues such as voltage overshoot, ringing and false turn-on. Any unchecked external parasitic impedances will further exacerbate the device transient behavior and run the risk of device failure under circuit level implementation. Therefore, this thesis work presents a detailed analytical framework to address some of the circuit level challenges associated with GaN. The analytical framework lays a foundation to optimize device safety and performance. The first part of this thesis work deals with mitigation of false turn-on of the synchronous-FET in a half bridge buck converter operated at 1 MHz frequency. The study presents a detail investigation of false turn-on event and proposes its mitigation by modifying the control-FET gate resistance. An analytical circuit model with intrinsic device components and external parasitic parameters has been considered to develop a relationship between control-FET gate resistance and false turn-on induced voltage of the synchronous-FET. The results of the analytical method proposed in this study show good agreement with the experimental results. The model can then be used to predict false turn-on at varying values of high-side gate resistance. The second part of this thesis focuses on development of an improved model to predict voltage overshoot in normally off GaN devices. As the GaN device requires lower gate bias to fully turn-on when compared to its counterpart (Si), there is a narrow margin between recommended (5V) and max gate voltage rating (6V). Any voltage spike beyond the maximum gate voltage could cause device breakdown and catastrophic failure. Therefore, to avoid such failures and safeguard the GaN device, proper prediction methodologies are required. In this study a higher order (fourth order) analytical method is developed that allows for the calculation of gate resistances necessary for a desired amount of overshoot. The non-linear capacitances of the device are modeled and considered in the analysis. The model is validated with a double-pulse tester and a boost converter. The developed method was compared with known second order and circuit simulation models and found to yield improved results. The two studies detailed here lay the foundation for optimizing the performance of GaN devices while keeping them in their safe operating regions.

Book Characterization and Implementation of Wide bandgap Semiconductor Power Devices

Download or read book Characterization and Implementation of Wide bandgap Semiconductor Power Devices written by Yuru Wang and published by . This book was released on 2020 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Vertical GaN and SiC Power Devices

Download or read book Vertical GaN and SiC Power Devices written by Kazuhiro Mochizuki and published by Artech House. This book was released on 2018-04-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique new resource provides a comparative introduction to vertical Gallium Nitride (GaN) and Silicon Carbide (SiC) power devices using real commercial device data, computer, and physical models. This book uses commercial examples from recent years and presents the design features of various GaN and SiC power components and devices. Vertical verses lateral power semiconductor devices are explored, including those based on wide bandgap materials. The abstract concepts of solid state physics as they relate to solid state devices are explained with particular emphasis on power solid state devices. Details about the effects of photon recycling are presented, including an explanation of the phenomenon of the family tree of photon-recycling. This book offers in-depth coverage of bulk crystal growth of GaN, including hydride vapor-phase epitaxial (HVPE) growth, high-pressure nitrogen solution growth, sodium-flux growth, ammonothermal growth, and sublimation growth of SiC. The fabrication process, including ion implantation, diffusion, oxidation, metallization, and passivation is explained. The book provides details about metal-semiconductor contact, unipolar power diodes, and metal-insulator-semiconductor (MIS) capacitors. Bipolar power diodes, power switching devices, and edge terminations are also covered in this resource.

Book Multi level Integrated Modeling of Wide Bandgap Semiconductor Devices  Components  Circuits  and Systems for Next Generation Power Electronics

Download or read book Multi level Integrated Modeling of Wide Bandgap Semiconductor Devices Components Circuits and Systems for Next Generation Power Electronics written by Andrew Joseph Sellers and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation investigates the propagation of information between models of disparate computational complexity and simulation domains with specific focus on the modeling of wide bandgap semiconductors for power electronics applications. First, analytical physics models and technology computer-aided design numerical physics models are presented. These types of physics models are contrasted by ease of generation and computational complexity. Next, processes generating transient simulations from these models are identified. Mixed-mode simulation and behavioral device models are established as two available options. Of these two, behavioral models are identified as the method producing superior computational performance due to their much-reduced simulation time. A comparison of switching performance for two wide bandgap field-effect transistors manufactured with the same process is next presented. Empirical and simulated switching results demonstrate that available models predict the slew rates reasonably well, but fail to accurately capture ringing frequencies. This is attributed to two primary causes; the modeling tool used for this comparison is incapable of producing a sufficiently high-quality fit to ensure accurate prediction and the devices are sensitive to parasitic values beyond the measurement uncertainty of the characterization hardware. To remedy this, a two-fold approach is necessary. First, a new model must be generated which is more capable of predicting steady-state performance. Second, a characterization procedure must be produced which tunes parameters beyond what is possible with empirical characterization. To the first point, a novel model based on the Curtice model is presented. The novel model adapts the Curtice model by adding gate-bias dependence to model parameters and introducing an exponential smoothing function to account for the gradual transition from linear to saturation exhibited by some wide bandgap field-effect transistors. Care is taken to model forward conduction, reverse conduction, and transfer characteristics with high accuracy. Non-linear capacitances are then modeled using a charge-based lookup table demonstrated by previous work in the literature to be effective. Thermal performance is accounted for with both the incorporation of thermal scaling factors and a thermal RC network to account for joule-heating. The proposed model is capable of capturing device steady-state and small-signal performance more precisely than previous models. A tuning and optimization procedure is next presented which is capable of tuning device model parasitic values within uncertainty bounds of characterization data. This method identifies the need for and introduces new model parameters intended to account for dispersive phenomena to a first degree. Pairing this method with the aforementioned model, significant improvements in transient agreement can be achieved for fast-switching devices. A method is also presented which identifies and quantifies the impact of parameters on transient performance. This process can be used to remove model parameters from the tuning set and possibly decouple parameter tuning. The propagation of these fully-tuned device and circuit models to the system level is next discussed. The cases of a buck converter and double pulse test are used as examples of dc switching circuits which may be used for switching characterization and to account for switching losses. Simulation is used to demonstrate that these circuits, when using similar components, produce comparable results. This allows the use of double pulse tests for switching characterization in simulation, thus eliminating the need for quasi-steady-state conditions to be reached in converter simulation. Methods are proposed for the inclusion of this data into system-level models such that simulation time will be minimally impacted. When used in conjunction, the methods presented in this chapter are sufficient to propagate information from the physics level all the way through to the system level. If specific circuits and system components are known, the impact of including a theoretical device can be assessed. This lends itself to advanced design of each type of model by analyzing the interactions predicted by various levels of models. This has serious implications for accelerating the deployment of wide bandgap semiconductor in power electronics by addressing the primary concerns of reliability and ease of implementation. By using these methods, devices, circuits, and systems can each be optimized to fully benefit from the theoretical advantages presented by wide bandgap semiconductor materials.

Book Wide Bandgap Semiconductor Power Devices

Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact

Book Wide Bandgap Semiconductors

Download or read book Wide Bandgap Semiconductors written by M. S. Chinthavali and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters. With the advent of the use of SiC devices it is imperative that models of these be made available in commercial simulators. This enables power electronic designers to simulate their designs for various test conditions prior to fabrication. To build an accurate transistor-level model of a power electronic system such as an inverter, the first step is to characterize the semiconductor devices that are present in the system. Suitable test beds need to be built for each device to precisely test the devices and obtain relevant data that can be used for modeling. This includes careful characterization of the parasitic elements so as to emulate the test setup as closely as possible in simulations. This report is arranged as follows: Chapter 2--The testing and characterization of several diodes and power switches is presented. Chapter 3--A 55-kW hybrid inverter (Si insulated gate bipolar transistor--SiC Schottky diodes) device models and test results are presented. A detailed description of the various test setups followed by the parameter extraction, modeling, and simulation study of the inverter performance is presented. Chapter 4--A 7.5-kW all-SiC inverter (SiC junction field effect transistors (JFET)--SiC Schottky diodes) was built and tested. The models built in Saber were validated using the test data and the models were used in system applications in the Saber simulator. The simulation results and a comparison of the data from the prototype tests are discussed in this chapter. Chapter 5--The duration test results of devices utilized in buck converters undergoing reliability testing are presented.

Book Wide Energy Bandgap Electronic Devices

Download or read book Wide Energy Bandgap Electronic Devices written by Fan Ren and published by World Scientific. This book was released on 2003 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.

Book Multiphysics Characterization of GaN Materials and Devices for Power Applications

Download or read book Multiphysics Characterization of GaN Materials and Devices for Power Applications written by Atse Julien Eric N'Dohi and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon power electronics has shown its limits due to its incapacity to sustain high voltage, high temperature and high frequency applications. Therefore, the need to resort to materials with larger band gap and solve silicon (Si) technological issues for high voltage operations has been getting more and more intense. Wide band gap materials such as Silicon Carbide (SiC), Gallium Nitride (GaN), and Diamond are very promising for power electronics because of their interesting physical properties such like high carrier mobility, high critical electric field and good thermal conductivity than Si that enable them to perform at high voltage and temperature domains. Semiconductors manufacturing companies indeed, consider them as potentials power or current converters, inverters and rectifers for improving home and industrial energy distribution and consumption in a better way. However, the road to get them into a larger mass production technology is still long because recent researches have shown that their performance is pinned by some physical phenomena such as structural defects appearance, strain and stress effects, doping and dopant control and effectivess and so on. Thus, ruling out these problems by a deep understanding of the physical mechanisms behind them is a key option in optimizing their performance. In this thesis, we confronted the physical and electrical properties of GaN material and devices through multiphysics and electrical characterizations approach such as micro Raman, cathodoluminescence and classical current-voltage I (V) measurements. The objective is to get an insight into the physical performance of these power electronic materials (SiC, GaN), especially of GaN based power devices due to their higher carrier mobility compared to SiC and their growing technology maturity for mass production and distribution; and suggest if possible, ways of optimizing their operating abilities at a micro level. The coupling of these characterization methods allow us to have a deep view of the physical mechanisms that support the high voltage or temperature operation of these GaN based materials and as well as help us to grab the discrepancy existing between physical theoretical parameters established through finite elements simulations and true experimental value.

Book Frequency Characterization of Si  SiC  and GaN MOSFETs Using Buck Converter in CCM as an Application

Download or read book Frequency Characterization of Si SiC and GaN MOSFETs Using Buck Converter in CCM as an Application written by Keshava Gopalakrishna and published by . This book was released on 2013 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Present day applications using power electronic converters are focusing towards improving the speed, efficiency, and robustness. This led to the implementation of new devices in such converters where speed and efficiency are of concern. As silicon (Si) based power devices are approaching their operational performance limits with respect to speed, it is essential to analyze the properties of new devices, which are capable of replacing silicon based devices. Wide band-gap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) are such materials, whose material properties show promising advantages for power electronic applications. This thesis focuses on the comparison of Si, SiC, and GaN based power devices. A detailed comparison in terms of the material performance based on their figures-of-merit will be discussed. In this thesis, a performance evaluation of Si, SiC, and GaN based power devices used as a high-side switch in a buck DC-DC converter will be performed. A buck converter having specifications: output voltage of 12 V and output power of 120 W. Initially, a design example for switching frequency of 100 kHz will be discussed. Further, an evaluation of the same for increase in switching frequencies will be performed. Finally, analyses of the power loss and efficiency of these devices will be made along with its validation using PSpice, SABER and MATLAB simulation software. It will be shown that the theoretical performance analyses are in accordance with the obtained simulated results. Finally, it will be shown that GaN based power devices have improved operational capabilities at high frequencies than those of Si and SiC.

Book Wide Energy Bandgap Electronic Devices

Download or read book Wide Energy Bandgap Electronic Devices written by Fan Ren and published by World Scientific. This book was released on 2003-07-14 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a summary of the current state-of-the-art in SiC and GaN and identify future areas of development. The remarkable improvements in material quality and device performance in the last few years show the promise of these technologies for areas that Si cannot operate because of it's smaller bandgap. We feel that this collection of chapters provides an excellent introduction to the field and is an outstanding reference for those performing research on wide bandgap semiconductors.In this book, we bring together numerous experts in the field to review progress in SiC and GaN electronic devices and novel detectors. Professor Morkoc reviews the growth and characterization of nitrides, followed by chapters from Professor Shur, Professor Karmalkar, and Professor Gaska on High Electron Mobility Transistors, Professor Pearton and co-workers on ultra-high breakdown voltage GaN-based rectifiers and the group of Professor Abernathy on emerging MOS devices in the nitride system. Dr Baca from Sandia National Laboratories and Dr Chang from Agilent review the use of mixed group V-nitrides as the base layer in novel Heterojunction Bipolar Transistors. There are 3 chapters on SiC, including Professor Skowronski on growth and characterization, Professor Chow on power Schottky and pin rectifiers and Professor Cooper on power MOSFETs. Professor Dupuis and Professor Campbell give an overview of short wavelength, nitride based detectors. Finally, Jihyun Kim and co-workers describe recent progress in wide bandgap semiconductor spintronics where one can obtain room temperature ferromagnetism and exploit the spin of the electron in addition to its charge.

Book Modeling and Simulation of Wide Bandgap Semiconductor Devices

Download or read book Modeling and Simulation of Wide Bandgap Semiconductor Devices written by Martin Lades and published by . This book was released on 2000 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: