EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Wave Turbine Analysis Tool Development

Download or read book Wave Turbine Analysis Tool Development written by Gerard E. Welch and published by . This book was released on 1998 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: A quasi-one-dimensional (Q-1-D) computational fluid dynamic solver, previously developed and validated for pressure-exchanger wave rotors, is extended in the present work to include the blade forces of power producing wave rotors (i.e., wave turbines). The accuracy of the single-passage Q-1-D solver is assessed relative to two two-dimensional solvers: a single-passage code and a multi-block stator/rotor/stator code. Comparisons of computed results for inviscid, steady and unsteady flows in passage geometries typical of wave rotors reveal that the blade force model is accurate and that the correlation (effective stress and heat flux) terms of the Q-1-D passage-averaged formulation can be neglected. The ends of the rotor passages pose particular challenges to Q-1-D formulations because the flow there must at times deviate significantly from the mean camber line angle to match the port flow fields. This problem is most acute during the opening and closing of the rotor passages. An example sub-model is developed to account for the deviation between the flow departure angle and the mean camber line exit angle that occurs as an inviscid flow decelerates to meet a uniform pressure boundary. Comparisons of results from four-port wave turbine simulations reveal that the Q-1-D solver currently overpredicts wave turbine performance levels and highlight the need to devote future effort to the boundary conditions and sub-models of the Q-1-D solver.

Book Assessment and Nonlinear Modeling of Wave  Tidal and Wind Energy Converters and Turbines

Download or read book Assessment and Nonlinear Modeling of Wave Tidal and Wind Energy Converters and Turbines written by Madjid Karimirad and published by . This book was released on 2020 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten-Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.

Book Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines

Download or read book Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines written by Jason Mark Jonkman and published by . This book was released on 2007 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested by model-to-model comparisons to ensure its correctness.

Book Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine

Download or read book Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine written by Yoon Hyeok Bae and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kim's research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149465

Book Wave Rotor Enhanced Gas Turbine Engine Demonstrator

Download or read book Wave Rotor Enhanced Gas Turbine Engine Demonstrator written by and published by . This book was released on 1999 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%, respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.

Book Wind Energy Explained

Download or read book Wind Energy Explained written by James F. Manwell and published by John Wiley & Sons. This book was released on 2010-09-14 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy’s bestselling textbook- fully revised. This must-have second edition includes up-to-date data, diagrams, illustrations and thorough new material on: the fundamentals of wind turbine aerodynamics; wind turbine testing and modelling; wind turbine design standards; offshore wind energy; special purpose applications, such as energy storage and fuel production. Fifty additional homework problems and a new appendix on data processing make this comprehensive edition perfect for engineering students. This book offers a complete examination of one of the most promising sources of renewable energy and is a great introduction to this cross-disciplinary field for practising engineers. “provides a wealth of information and is an excellent reference book for people interested in the subject of wind energy.” (IEEE Power & Energy Magazine, November/December 2003) “deserves a place in the library of every university and college where renewable energy is taught.” (The International Journal of Electrical Engineering Education, Vol.41, No.2 April 2004) “a very comprehensive and well-organized treatment of the current status of wind power.” (Choice, Vol. 40, No. 4, December 2002)

Book Development of a Performance Matched Wind Turbine and Analysis Tools for Model Scale Testing of Floating Offshore Wind Turbines

Download or read book Development of a Performance Matched Wind Turbine and Analysis Tools for Model Scale Testing of Floating Offshore Wind Turbines written by Matthew John Lombard Fowler and published by . This book was released on 2014 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines  Fact Sheet

Download or read book New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines Fact Sheet written by and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. Thisnew coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

Book Coupled Dynamic Modeling of Floating Wind Turbine Systems

Download or read book Coupled Dynamic Modeling of Floating Wind Turbine Systems written by and published by . This book was released on 2006 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Book Offshore Mechanics

Download or read book Offshore Mechanics written by Madjid Karimirad and published by John Wiley & Sons. This book was released on 2018-05-07 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.

Book New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines  Fact Sheet

Download or read book New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines Fact Sheet written by and published by . This book was released on 2011 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

Book Wave and Tidal Energy

    Book Details:
  • Author : Deborah Greaves
  • Publisher : John Wiley & Sons
  • Release : 2018-07-23
  • ISBN : 1119014441
  • Pages : 724 pages

Download or read book Wave and Tidal Energy written by Deborah Greaves and published by John Wiley & Sons. This book was released on 2018-07-23 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eine umfassende Publikation zu sämtlichen Aspekten der Wellen- und Gezeitenenergie. Wave and Tidal Energy gibt einen ausführlichen Überblick über die Entwicklung erneuerbarer Energie aus dem Meer, bezieht sich auf die neueste Forschung und Erfahrungen aus Anlagentests. Das Buch verfolgt zwei Ziele, zum einen vermittelt es Einsteigern in das Fachgebiet eine Überblick über die Wellen- und Gezeitenenergie, zum anderen ist es ein Referenzwerk für komplexere Studien und die Praxis. Es vermittelt Detailwissen zu wichtigen Themen wie Ressourcencharakterisierung, Technologie für Wellen- und Gezeitenanlagen, Stromversorgungssysteme, numerische und physikalische Modellierung, Umwelteffekte und Politik. Zusätzlich enthält es eine aktuelle Übersicht über Entwicklungen in der ganzen Welt sowie Fallstudien zu ausgewählten Projekten. Hauptmerkmale: - Ausführliches Referenzwerk zu allen Aspekten der interdisziplinären Fachrichten Wellen- und Gezeitenenergie. - Greift auf die neuesten Forschungsergebnisse und die Erfahrung führender Experten in der numerischen und laborgestützten Modellierung zurück. - Gibt einen Überblick über regionale Entwicklungen in aller Welt, repräsentative Projekte werden in Fallstudien vorgestellt. Wave and Tidal Energy ist ein wertvolles Referenzwerk für eine breite Leserschaft, von Studenten der Ingenieurwissenschaften und technischen Managern über politische Entscheidungsträger bis hin zu Studienabsolventen und Forschern.

Book Reliability Based Optimization of Floating Wind Turbine Support Structures

Download or read book Reliability Based Optimization of Floating Wind Turbine Support Structures written by Mareike Leimeister and published by Springer Nature. This book was released on 2023-01-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering.

Book Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored Semi submersible Platform

Download or read book Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored Semi submersible Platform written by Mohit Soni and published by . This book was released on 2014 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy, the fastest growing source of renewable energy, is a promising resource for power generation. Offshore wind energy, in particular,offers favorable conditions for power generation--high winds with low turbulence, minimal visual impacts and high generation capacities. Offshore wind turbines mounted on floating platforms are the most economical and viable solution for deep water sites. A semi-submersible platform is an appropriate floating platform for a deep water site, providing stability through high water-plane area. In the wind energy industry, there has been continuing interest in developing larger turbines. At Sandia National Laboratories (SNL), efforts have led to the development of a 13.2 MW wind turbine model with blades 100 meters in length, significantly larger than commercially available blades at present. Such a large wind turbine needs to be carefully analyzed and studied before it can be considered suitable for commercial purposes. The dynamic analysis of the SNL 13.2 MW wind turbine mounted on a moored semi-submersible platform is the subject of this study. This integrated 13.2 MW wind turbine system has been developed and its various physical properties have been studied in this and another associated study. The semi-submersible platform is developed using various modeling tools. For the wind turbine-platform system model developed, dynamic analyses are performed using simulation tools to understand the coupled behavior of the wind turbine and the platform. A reference site is chosen to define the environmental conditions, based on which the short-term extreme response of the offshore wind turbine is estimated. The system is loaded with selected combinations of winds and waves to assess controlling combinations of wind speeds and wave heights that influence the response. The influence of changes in model parameters on overall response is also studied.

Book Recent Advances in CFD for Wind and Tidal Offshore Turbines

Download or read book Recent Advances in CFD for Wind and Tidal Offshore Turbines written by Esteban Ferrer and published by Springer. This book was released on 2019-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.