Download or read book Visualization and Processing of Tensor Fields written by Joachim Weickert and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
Download or read book Visualization and Processing of Tensor Fields written by David H. Laidlaw and published by Springer Science & Business Media. This book was released on 2009-03-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.
Download or read book New Developments in the Visualization and Processing of Tensor Fields written by David H. Laidlaw and published by Springer Science & Business Media. This book was released on 2012-09-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.
Download or read book Anisotropy Across Fields and Scales written by Evren Özarslan and published by Springer Nature. This book was released on 2021 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Download or read book Visualization and Processing of Tensors and Higher Order Descriptors for Multi Valued Data written by Carl-Fredrik Westin and published by Springer. This book was released on 2014-07-17 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising from the fourth Dagstuhl conference entitled Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (2011), this book offers a broad and vivid view of current work in this emerging field. Topics covered range from applications of the analysis of tensor fields to research on their mathematical and analytical properties. Part I, Tensor Data Visualization, surveys techniques for visualization of tensors and tensor fields in engineering, discusses the current state of the art and challenges, and examines tensor invariants and glyph design, including an overview of common glyphs. The second Part, Representation and Processing of Higher-order Descriptors, describes a matrix representation of local phase, outlines mathematical morphological operations techniques, extended for use in vector images, and generalizes erosion to the space of diffusion weighted MRI. Part III, Higher Order Tensors and Riemannian-Finsler Geometry, offers powerful mathematical language to model and analyze large and complex diffusion data such as High Angular Resolution Diffusion Imaging (HARDI) and Diffusion Kurtosis Imaging (DKI). A Part entitled Tensor Signal Processing presents new methods for processing tensor-valued data, including a novel perspective on performing voxel-wise morphometry of diffusion tensor data using kernel-based approach, explores the free-water diffusion model, and reviews proposed approaches for computing fabric tensors, emphasizing trabecular bone research. The last Part, Applications of Tensor Processing, discusses metric and curvature tensors, two of the most studied tensors in geometry processing. Also covered is a technique for diagnostic prediction of first-episode schizophrenia patients based on brain diffusion MRI data. The last chapter presents an interactive system integrating the visual analysis of diffusion MRI tractography with data from electroencephalography.
Download or read book Tensors in Image Processing and Computer Vision written by Santiago Aja-Fernández and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.
Download or read book Data Visualization written by Alexandru C. Telea and published by CRC Press. This book was released on 2014-09-18 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing a complete visualization system involves many subtle decisions. When designing a complex, real-world visualization system, such decisions involve many types of constraints, such as performance, platform (in)dependence, available programming languages and styles, user-interface toolkits, input/output data format constraints, integration with third-party code, and more. Focusing on those techniques and methods with the broadest applicability across fields, the second edition of Data Visualization: Principles and Practice provides a streamlined introduction to various visualization techniques. The book illustrates a wide variety of applications of data visualizations, illustrating the range of problems that can be tackled by such methods, and emphasizes the strong connections between visualization and related disciplines such as imaging and computer graphics. It covers a wide range of sub-topics in data visualization: data representation; visualization of scalar, vector, tensor, and volumetric data; image processing and domain modeling techniques; and information visualization. See What’s New in the Second Edition: Additional visualization algorithms and techniques New examples of combined techniques for diffusion tensor imaging (DTI) visualization, illustrative fiber track rendering, and fiber bundling techniques Additional techniques for point-cloud reconstruction Additional advanced image segmentation algorithms Several important software systems and libraries Algorithmic and software design issues are illustrated throughout by (pseudo)code fragments written in the C++ programming language. Exercises covering the topics discussed in the book, as well as datasets and source code, are also provided as additional online resources.
Download or read book Modeling Analysis and Visualization of Anisotropy written by Thomas Schultz and published by Springer. This book was released on 2017-10-14 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the modeling, processing and visualization of anisotropy, irrespective of the context in which it emerges, using state-of-the-art mathematical tools. As such, it differs substantially from conventional reference works, which are centered on a particular application. It covers the following topics: (i) the geometric structure of tensors, (ii) statistical methods for tensor field processing, (iii) challenges in mapping neural connectivity and structural mechanics, (iv) processing of uncertainty, and (v) visualizing higher-order representations. In addition to original research contributions, it provides insightful reviews. This multidisciplinary book is the sixth in a series that aims to foster scientific exchange between communities employing tensors and other higher-order representations of directionally dependent data. A significant number of the chapters were co-authored by the participants of the workshop titled Multidisciplinary Approaches to Multivalued Data: Modeling, Visualization, Analysis, which was held in Dagstuhl, Germany in April 2016. It offers a valuable resource for those working in the field of multi-directional data, vital inspirations for the development of new models, and essential analysis and visualization techniques, thus furthering the state-of-the-art in studies involving anisotropy.
Download or read book New Developments in the Visualization and Processing of Tensor Fields written by David H. Laidlaw and published by Springer. This book was released on 2016-05-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields. "
Download or read book Mathematical Morphology and Its Applications to Signal and Image Processing written by Bernhard Burgeth and published by Springer. This book was released on 2019-06-19 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the refereed proceedings of the 14th International Symposium on Mathematical Morphology, ISMM 2019, held in Saarbrücken, Germany, in July 2019. The 40 revised full papers presented together with one invited talk were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on Theory, Discrete Topology and Tomography, Trees and Hierarchies, Multivariate Morphology, Computational Morphology, Machine Learning, Segmentation, Applications in Engineering, and Applications in (Bio)medical Imaging.
Download or read book Tensor Voting written by Philippos Mordohai and published by Springer Nature. This book was released on 2022-06-01 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.
Download or read book Visualization and Processing of Higher Order Descriptors for Multi Valued Data written by Ingrid Hotz and published by Springer. This book was released on 2015-07-03 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for image processing, visualization and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next generation of diffusion MRI. To do so, it combines contributions on new developments, current challenges in this area and state-of-the-art surveys. Compared to the increasing importance of higher-order descriptors in a range of applications, tools for analysis and processing are still relatively hard to come by. Even though application areas such as medical imaging, fluid dynamics and structural mechanics are very different in nature they face many shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. This book will appeal to scientists who are working to develop new analysis methods in the areas of image processing and visualization, as well as those who work with applications that generate higher-order data or could benefit from higher-order models and are searching for novel analytical tools.
Download or read book Handbook of Computer Aided Geometric Design written by G. Farin and published by Elsevier. This book was released on 2002-08-13 with total page 849 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive coverage of the fields Geometric Modeling, Computer-Aided Design, and Scientific Visualization, or Computer-Aided Geometric Design. Leading international experts have contributed, thus creating a one-of-a-kind collection of authoritative articles. There are chapters outlining basic theory in tutorial style, as well as application-oriented articles. Aspects which are covered include: Historical outline Curve and surface methods Scientific Visualization Implicit methods Reverse engineering. This book is meant to be a reference text for researchers in the field as well as an introduction to graduate students wishing to get some exposure to this subject.
Download or read book Handbook of Variational Methods for Nonlinear Geometric Data written by Philipp Grohs and published by Springer Nature. This book was released on 2020-04-03 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Download or read book Mathematical Methods for Signal and Image Analysis and Representation written by Luc Florack and published by Springer Science & Business Media. This book was released on 2012-01-12 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Download or read book Pattern Recognition written by Gunther Notni and published by Springer Science & Business Media. This book was released on 2009-09-03 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 31st Symposium of the German Association for Pattern Recognition, DAGM 2009, held in Jena, Germany, in September 2009. The 56 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on motion and tracking; pedestrian recognition and automotive applications; features; single-view and 3D reconstruction; learning and classification; pattern recognition and estimation; stereo and multi-view reconstruction; image analysis and applications; and segmentation.