EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Vector Bundles in Algebraic Geometry

Download or read book Vector Bundles in Algebraic Geometry written by N. J. Hitchin and published by Cambridge University Press. This book was released on 1995-03-16 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of survey articles by the main speakers at the 1993 Durham symposium on vector bundles in algebraic geometry.

Book Positivity in Algebraic Geometry I

Download or read book Positivity in Algebraic Geometry I written by R.K. Lazarsfeld and published by Springer Science & Business Media. This book was released on 2004-08-24 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Book Lectures on Vector Bundles

Download or read book Lectures on Vector Bundles written by J. Le Potier and published by Cambridge University Press. This book was released on 1997-01-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.

Book Representations of Fundamental Groups of Algebraic Varieties

Download or read book Representations of Fundamental Groups of Algebraic Varieties written by Kang Zuo and published by Springer. This book was released on 2006-11-14 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.

Book Moduli of Vector Bundles

Download or read book Moduli of Vector Bundles written by Masaki Maruyama and published by CRC Press. This book was released on 2023-05-31 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."

Book Cohomology of Vector Bundles and Syzygies

Download or read book Cohomology of Vector Bundles and Syzygies written by Jerzy Weyman and published by Cambridge University Press. This book was released on 2003-06-09 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this book is an exposition of the geometric technique of calculating syzygies. It is written from a point of view of commutative algebra, and without assuming any knowledge of representation theory the calculation of syzygies of determinantal varieties is explained. The starting point is a definition of Schur functors, and these are discussed from both an algebraic and geometric point of view. Then a chapter on various versions of Bott's Theorem leads on to a careful explanation of the technique itself, based on a description of the direct image of a Koszul complex. Applications to determinantal varieties follow, plus there are also chapters on applications of the technique to rank varieties for symmetric and skew symmetric tensors of arbitrary degree, closures of conjugacy classes of nilpotent matrices, discriminants and resultants. Numerous exercises are included to give the reader insight into how to apply this important method.

Book Differential Geometry of Complex Vector Bundles

Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Book An Introduction to Invariants and Moduli

Download or read book An Introduction to Invariants and Moduli written by Shigeru Mukai and published by Cambridge University Press. This book was released on 2003-09-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample Text

Book Moduli Spaces and Vector Bundles

Download or read book Moduli Spaces and Vector Bundles written by Steve Bradlow and published by Cambridge University Press. This book was released on 2009-05-21 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coverage includes foundational material as well as current research, authored by top specialists within their fields.

Book A Tribute to C S  Seshadri

    Book Details:
  • Author : Venkatrama Lakshmibai
  • Publisher : Springer Science & Business Media
  • Release : 2003-07-24
  • ISBN : 9783764304447
  • Pages : 598 pages

Download or read book A Tribute to C S Seshadri written by Venkatrama Lakshmibai and published by Springer Science & Business Media. This book was released on 2003-07-24 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.

Book Algebraic Curves and One dimensional Fields

Download or read book Algebraic Curves and One dimensional Fields written by Fedor Bogomolov and published by American Mathematical Soc.. This book was released on with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic curves have many special properties that make their study particularly rewarding. As a result, curves provide a natural introduction to algebraic geometry. In this book, the authors also bring out aspects of curves that are unique to them and emphasize connections with algebra. This text covers the essential topics in the geometry of algebraic curves, such as line bundles and vector bundles, the Riemann-Roch Theorem, divisors, coherent sheaves, and zeroth and firstcohomology groups. The authors make a point of using concrete examples and explicit methods to ensure that the style is clear and understandable. Several chapters develop the connections between the geometry of algebraic curves and the algebra of one-dimensional fields. This is an interesting topic that israrely found in introductory texts on algebraic geometry. This book makes an excellent text for a first course for graduate students.

Book Introduction to Moduli Problems and Orbit Spaces

Download or read book Introduction to Moduli Problems and Orbit Spaces written by P. E. Newstead and published by Alpha Science International Limited. This book was released on 2012 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Invariant Theory (GIT), developed in the 1960s by David Mumford, is the theory of quotients by group actions in Algebraic Geometry. Its principal application is to the construction of various moduli spaces. Peter Newstead gave a series of lectures in 1975 at the Tata Institute of Fundamental Research, Mumbai on GIT and its application to the moduli of vector bundles on curves. It was a masterful yet easy to follow exposition of important material, with clear proofs and many examples. The notes, published as a volume in the TIFR lecture notes series, became a classic, and generations of algebraic geometers working in these subjects got their basic introduction to this area through these lecture notes. Though continuously in demand, these lecture notes have been out of print for many years. The Tata Institute is happy to re-issue these notes in a new print.

Book Real Algebraic Geometry

Download or read book Real Algebraic Geometry written by Michel Coste and published by Springer. This book was released on 2006-11-15 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contributions by: S. Akbulut and H. King; C. Andradas and J. Ruiz; A. Borobia; L. Br|cker; G.W. Brumfield; A. Castilla; Z. Charzynski and P. Skibinski; M. Coste and M. Reguiat; A. Degtyarev; Z. Denkowska; J.-P. Francoise and F. Ronga; J.M. Gamboa and C. Ueno; D. Gondard- Cozette; I.V. Itenberg; P. Jaworski; A. Korchagin; T. Krasinksi and S. Spodzieja; K. Kurdyka; H. Lombardi; M. Marshall and L. Walter; V.F. Mazurovskii; G. Mikhalkin; T. Mostowski and E. Rannou; E.I. Shustin; N. Vorobjov.

Book The Geometry of Moduli Spaces of Sheaves

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Book 3264 and All That

    Book Details:
  • Author : David Eisenbud
  • Publisher : Cambridge University Press
  • Release : 2016-04-14
  • ISBN : 1107017084
  • Pages : 633 pages

Download or read book 3264 and All That written by David Eisenbud and published by Cambridge University Press. This book was released on 2016-04-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3264, the mathematical solution to a question concerning geometric figures.

Book Helices and Vector Bundles

Download or read book Helices and Vector Bundles written by A. N. Rudakov and published by Cambridge University Press. This book was released on 1990-07-12 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising out of a series of seminars organized in Moscow by A.N. Rudakov, this volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry.

Book Algebraic Surfaces and Holomorphic Vector Bundles

Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.