EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Validation of a CFD Approach for Gas Turbine Internal Cooling Passage Heat Transfer Prediction

Download or read book Validation of a CFD Approach for Gas Turbine Internal Cooling Passage Heat Transfer Prediction written by Daniel Wilde and published by . This book was released on 2015 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Capability of various turbulence models in the representation of cooling physics is evaluated against experimental data. Model sensitivity to boundary conditions and mesh density is also evaluated.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book A Finite Element Conjugate Heat Transfer Method

Download or read book A Finite Element Conjugate Heat Transfer Method written by Remo Marini and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CFD Predictions of Heat Transfer Coefficient Augmentation on a Simulated Film Cooled Turbine Blade Leading Edge

Download or read book CFD Predictions of Heat Transfer Coefficient Augmentation on a Simulated Film Cooled Turbine Blade Leading Edge written by Gwennaël Beirnaert-Chartrel and published by . This book was released on 2011 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations were run to study heat transfer coefficient augmentation with film cooling for a simulated gas turbine blade leading edge. The realizable k-[epsilon] turbulence model (RKE) and Shear Stress Transport k-[omega] turbulence model (SST) were used for the computational simulations. RKE computations completed at a unity density ratio were confirmed to be consistent with experimental measurements conducted by Yuki et al.(1998) and Johnston et al. (1999) whereas SST computations exhibited significant discrepancies. Moreover the effect of the density ratio on heat transfer coefficient augmentation was studied because experimental measurements of heat transfer coefficient augmentation with film cooling are generally constrained to unity density ratio tests. It was shown that heat transfer coefficient augmentation can be simulated using unity density ratio jets, but only when scaled with the momentum flux ratio of the coolant jets.

Book Impingement Jet Cooling in Gas Turbines

Download or read book Impingement Jet Cooling in Gas Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-05-28 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Introduction to Heat Transfer

Download or read book Introduction to Heat Transfer written by Bengt Sundén and published by WIT Press. This book was released on 2012 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basic mechanisms for transfer of heat, this book gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers. This book is aimed to be used in both undergraduate and graduate courses in heat transfer and thermal engineering. It can successfully be used in R & D work and thermal engineering design in industry and by consultancy firms

Book Gas Turbine Heat Transfer and Cooling Technology

Download or read book Gas Turbine Heat Transfer and Cooling Technology written by Je-Chin Han and published by CRC Press. This book was released on 2001-03-22 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be a reference book for engineers working and interested in gas turbine heat transfer analysis and cooling design for advanced research. The methods presented in this book can be applied to heat exchangers, nuclear power plants and electronic component cooling.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Computational and Experimental Investigation of Internal Cooling Passages for Gas Turbine Applications

Download or read book Computational and Experimental Investigation of Internal Cooling Passages for Gas Turbine Applications written by Aditya Narayan Kulkarni and published by . This book was released on 2020 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to keep turbine blade surface temperature below melting point in gas turbine engines, internal passages in blades must be used to route cooler air through the blade. Design optimization of cooling passages necessitates an understanding of heat transfer patterns to minimize cooling mass flow. This project compares two approximations used to determine the heat transfer rate inside cooling channels in both computational and experimental investigations. The two approximations used in this project are constant surface temperature and transient heating. In an operating engine, the accuracy of both these conditions are not guaranteed. During steady state operation, the blade can cycle through many different flow paths which will impart different temperatures across the surface, and at no time will a blade be under completely uniform temperature except for the starting cycle. However, to make measurements of heat transfer easier, the two assumptions mentioned beforehand are utilized extensively. The constant surface temperature method uses a heater attached to the back of a thin copper plate to hold the surface temperature at a constant value in air flow. In the transient full-field method, thermochromic liquid crystals, which change colors with temperature, are applied to flat plate and turbulated geometries to capture the change in wall temperature during heating and cooling processes. Heat transfer rates are then derived from the transient temperature data using a semi-infinite solid model. The constant temperature approach is better established than the transient method and produces significantly higher Nusselt numbers, but the transient method provides better spatial resolution. A numerical conjugate heat transfer model is used to further investigate the discrepancy between the methods. The experimental geometry is replicated for both methods to gain an understanding of the fluid dynamics in each setup and how they differ.

Book NASA Technical Memorandum

Download or read book NASA Technical Memorandum written by and published by . This book was released on 1994 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Turbulent Flow and Heat Transfer in Turbine blade Coolant Passages

Download or read book Turbulent Flow and Heat Transfer in Turbine blade Coolant Passages written by Mark Andrew Stephens and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops and validates a computational fluid dynamics (CFD) framework that can be used to analyze the three-dimensional, turbulent, compressible, rotating fluid flow and associated heat transfer of an internal coolant passage with ribs as a function of the design and operating conditions of gas turbine systems. Uses this framework to study the flow field and associated heat transfer for a number of configurations and operating conditions.

Book Flow and Heat Transfer Measurements in a Gas Turbine Wall Cooling Passage

Download or read book Flow and Heat Transfer Measurements in a Gas Turbine Wall Cooling Passage written by Ioannis Ieronymidis and published by . This book was released on 2005 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Measurement and CFD Prediction of Heat Transfer to a Nozzle Guide Vane

Download or read book Experimental Measurement and CFD Prediction of Heat Transfer to a Nozzle Guide Vane written by Trevor J. Kirsten and published by . This book was released on 1996 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK - June 10-13, 1996.