Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
Download or read book Communication and Language Analysis in the Corporate World written by Hart, Roderick P. and published by IGI Global. This book was released on 2014-01-31 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: While personal variables like age, education, and gender are often thought to contribute to a persons distinctive speech pattern, corporate environments often develop its own way of communication which include larger scale variables like the economy and organizational traditions. Communication and Language Analysis in the Corporate World provides insight into the verbiage of the corporate world and the influence of this environment for a persons speech pattern, language, and terminology. This book will provide a guide for language researchers and business leaders alike so that they may find a way to communicate with everyone customers, colleagues, and CEOs effectively.
Download or read book Advances in Accounting Behavioral Research written by Khondkar E. Karim and published by Emerald Group Publishing. This book was released on 2023-03-13 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 26 of Advances in Accounting Behavioral Research compiles innovative and new explorations into the behavioral aspects of accounting and auditing including the effects of organizational commitment, the impact of stressors on performance, the effects of auditor familiarity and the examination of personality traits.
Download or read book The Handbook of News Analytics in Finance written by Gautam Mitra and published by John Wiley & Sons. This book was released on 2011-07-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of News Analytics in Finance is a landmarkpublication bringing together the latest models and applications ofNews Analytics for asset pricing, portfolio construction, tradingand risk control. The content of the Hand Book is organised to provide arapid yet comprehensive understanding of this topic. Chapter 1 setsout an overview of News Analytics (NA) with an explanation of thetechnology and applications. The rest of the chapters are presentedin four parts. Part 1 contains an explanation of methods and modelswhich are used to measure and quantify news sentiment. In Part 2the relationship between news events and discovery of abnormalreturns (the elusive alpha) is discussed in detail by the leadingresearchers and industry experts. The material in this part alsocovers potential application of NA to trading and fund management.Part 3 covers the use of quantified news for the purpose ofmonitoring, early diagnostics and risk control. Part 4 is entirelyindustry focused; it contains insights of experts from leadingtechnology (content) vendors. It also contains a discussion oftechnologies and finally a compact directory of content vendor andfinancial analytics companies in the marketplace of NA. Thebook draws equally upon the expertise of academics andpractitioners who have developed these models and is supported bytwo major content vendors - RavenPack and Thomson Reuters - leadingproviders of news analytics software and machine readablenews. The book will appeal to decision makers in the banking, finance andinsurance services industry. In particular: asset managers;quantitative fund managers; hedge fund managers; algorithmictraders; proprietary (program) trading desks; sell-side firms;brokerage houses; risk managers and research departments willbenefit from the unique insights into this new and pertinent areaof financial modelling.
Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Download or read book Handbook of Research on Engineering Business and Healthcare Applications of Data Science and Analytics written by Patil, Bhushan and published by IGI Global. This book was released on 2020-10-23 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
Download or read book The Internet Unleashed written by and published by Sams. This book was released on 1995 with total page 1444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Internet Unleashed, Second Edition helps the newcomer get up and running on the Internet and serves as a reference for the more experienced user. -- The only book that includes the experience of over 40 of the world's top Internet experts -- New edition is updated with expanded coverage of Web publishing, Internet business, Internet multimedia and virtual reality, Internet security, Java, and more
Download or read book Handbook of Sentiment Analysis in Finance written by Gautam Mitra and published by . This book was released on 2016 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book From Opinion Mining to Financial Argument Mining written by Chung-Chi Chen and published by Springer Nature. This book was released on 2021 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent financial technology (FinTech) development, some interdisciplinary researchers start to involve in the in-depth analysis of investors' opinions. These works indicate the trend toward fine-grained opinion mining in the financial domain. When expressing opinions in finance, terms like bullish/bearish often spring to mind. However, the market sentiment of the financial instrument is just one type of opinion in the financial industry. Like other industries such as manufacturing and textiles, the financial industry also has a large number of products. Financial services are also a major business for many financial companies, especially in the context of the recent FinTech trend. For instance, many commercial banks focus on loans and credit cards. Although there are a variety of issues that could be explored in the financial domain, most researchers in the AI and NLP communities only focus on the market sentiment of the stock or foreign exchange. This open access book addresses several research issues that can broaden the research topics in the AI community. It also provides an overview of the status quo in fine-grained financial opinion mining to offer insights into the futures goals. For a better understanding of the past and the current research, it also discusses the components of financial opinions one-by-one with the related works and highlights some possible research avenues, providing a research agenda with both micro- and macro-views toward financial opinions.
Download or read book Powering the Digital Economy Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Download or read book Text Analytics with SAS written by and published by . This book was released on 2019-06-14 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: SAS provides many different solutions to investigate and analyze text and operationalize decisioning. Several impressive papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from recent Global Forum contributions to introduce you to the topic and let you sample what each has to offer. Also available free as a PDF from sas.com/books.
Download or read book How can I get started Investing in the Stock Market written by Lokesh Badolia and published by Educreation Publishing. This book was released on 2016-10-27 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.
Download or read book The Book of Alternative Data written by Alexander Denev and published by John Wiley & Sons. This book was released on 2020-07-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
Download or read book Mining Data for Financial Applications written by Valerio Bitetta and published by Springer Nature. This book was released on 2021-01-14 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.* The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. *The workshop was held virtually due to the COVID-19 pandemic. “Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Download or read book First International Conference on Sustainable Technologies for Computational Intelligence written by Ashish Kumar Luhach and published by Springer Nature. This book was released on 2019-11-01 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers high-quality papers presented at the First International Conference on Sustainable Technologies for Computational Intelligence (ICTSCI 2019), which was organized by Sri Balaji College of Engineering and Technology, Jaipur, Rajasthan, India, on March 29–30, 2019. It covers emerging topics in computational intelligence and effective strategies for its implementation in engineering applications.
Download or read book Competition Culture and Corporate Finance written by Terry Harris and published by Springer Nature. This book was released on 2023-04-24 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a measure of firms’ competition culture based on a textual analysis and natural language processing (NPL) of firms’ 10-K filings. Using this measure, the book explores the relationship between competition culture and various phenomena in corporate finance, specifically, institutional ownership structure, stock return performance, idiosyncratic stock price crash risk, meeting/beating analysts’ earnings expectations, and earnings management activity, for a large sample of US-based financial and non-financial firms. In particular, the book provides evidence that transient institutional ownership intensifies firms’ competition culture, while dedicated institutional ownership lessens it. In addition, the book’s findings suggest that firms with greater levels of competition culture achieve higher levels of short-term stock return performance, experience greater incidence of idiosyncratic stock price crashes, and are more prone to meet/beat analysts forecast and engage in accruals-based earnings manipulation. Finally, the book examines the role played by competition culture in financial firms (i.e., banks). Specifically, the book explores the effect of competition culture on bank lending and shows that banks with greater levels of competition culture are generally more prone to engage in procyclical lending activity. The findings of the book have significant policy implications and will be of interests to regulators, accounting standard-setters, managers and those charged with firm governance, career academics and researchers, graduates, and those generally interested in the role played by corporate culture in the related fields of finance, economics, and accounting.
Download or read book How Novelty and Narratives Drive the Stock Market written by Nicholas Mangee and published by Cambridge University Press. This book was released on 2021-10-14 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: The novelty-narrative hypothesis is used to understand stock market instability using big data textual analytics of financial news.