EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Statistical Learning

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Book Permutation  Parametric  and Bootstrap Tests of Hypotheses

Download or read book Permutation Parametric and Bootstrap Tests of Hypotheses written by Phillip I. Good and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Previous edition sold over 1400 copies worldwide. This new edition includes many more real-world illustrations from biology, business, clinical trials, economics, geology, law, medicine, social science and engineering along with twice the number of exercises.

Book Resampling Based Multiple Testing

Download or read book Resampling Based Multiple Testing written by Peter H. Westfall and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.

Book Bootstrap Methods and Their Application

Download or read book Bootstrap Methods and Their Application written by A. C. Davison and published by Cambridge University Press. This book was released on 1997-10-28 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disk contains the library functions and documentation for use with Splus for Windows.

Book Introduction to Robust Estimation and Hypothesis Testing

Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

Book An Introduction to the Bootstrap

Download or read book An Introduction to the Bootstrap written by Bradley Efron and published by CRC Press. This book was released on 1994-05-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

Book The Practice of Business Statistics Companion Chapter 18  Bootstrap Methods and Permutation Tests

Download or read book The Practice of Business Statistics Companion Chapter 18 Bootstrap Methods and Permutation Tests written by David S. Moore and published by W. H. Freeman. This book was released on 2003-03-10 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonparametric Statistical Methods Using R

Download or read book Nonparametric Statistical Methods Using R written by Graysen Cline and published by Scientific e-Resources. This book was released on 2019-05-19 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Statistical Methods Using R covers customary nonparametric methods and rank-based examinations, including estimation and deduction for models running from straightforward area models to general direct and nonlinear models for uncorrelated and corresponded reactions. The creators underscore applications and measurable calculation. They represent the methods with numerous genuine and mimicked information cases utilizing R, including the bundles Rfit and npsm. The book initially gives a diagram of the R dialect and essential factual ideas previously examining nonparametrics. It presents rank-based methods for one-and two-example issues, strategies for relapse models, calculation for general settled impacts ANOVA and ANCOVA models, and time-to-occasion examinations. The last two parts cover further developed material, including high breakdown fits for general relapse models and rank-based surmising for bunch associated information. The book can be utilized as an essential content or supplement in a course on connected nonparametric or hearty strategies and as a source of perspective for scientists who need to execute nonparametric and rank-based methods by and by. Through various illustrations, it demonstrates to perusers proper methodologies to apply these methods utilizing R.

Book An Introduction to Bootstrap Methods with Applications to R

Download or read book An Introduction to Bootstrap Methods with Applications to R written by Michael R. Chernick and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to bootstrap methods in the R programming environment Bootstrap methods provide a powerful approach to statistical data analysis, as they have more general applications than standard parametric methods. An Introduction to Bootstrap Methods with Applications to R explores the practicality of this approach and successfully utilizes R to illustrate applications for the bootstrap and other resampling methods. This book provides a modern introduction to bootstrap methods for readers who do not have an extensive background in advanced mathematics. Emphasis throughout is on the use of bootstrap methods as an exploratory tool, including its value in variable selection and other modeling environments. The authors begin with a description of bootstrap methods and its relationship to other resampling methods, along with an overview of the wide variety of applications of the approach. Subsequent chapters offer coverage of improved confidence set estimation, estimation of error rates in discriminant analysis, and applications to a wide variety of hypothesis testing and estimation problems, including pharmaceutical, genomics, and economics. To inform readers on the limitations of the method, the book also exhibits counterexamples to the consistency of bootstrap methods. An introduction to R programming provides the needed preparation to work with the numerous exercises and applications presented throughout the book. A related website houses the book's R subroutines, and an extensive listing of references provides resources for further study. Discussing the topic at a remarkably practical and accessible level, An Introduction to Bootstrap Methods with Applications to R is an excellent book for introductory courses on bootstrap and resampling methods at the upper-undergraduate and graduate levels. It also serves as an insightful reference for practitioners working with data in engineering, medicine, and the social sciences who would like to acquire a basic understanding of bootstrap methods.

Book Introductory Econometrics

Download or read book Introductory Econometrics written by Humberto Barreto and published by Cambridge University Press. This book was released on 2006 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.

Book Mathematical Statistics with Resampling and R

Download or read book Mathematical Statistics with Resampling and R written by Laura M. Chihara and published by John Wiley & Sons. This book was released on 2018-09-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.

Book Bootstrap Methods

    Book Details:
  • Author : Michael R. Chernick
  • Publisher : John Wiley & Sons
  • Release : 2011-09-23
  • ISBN : 1118211596
  • Pages : 337 pages

Download or read book Bootstrap Methods written by Michael R. Chernick and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.

Book Applied Regression Analysis and Generalized Linear Models

Download or read book Applied Regression Analysis and Generalized Linear Models written by John Fox and published by SAGE Publications. This book was released on 2015-03-18 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.

Book Bootstrapping

    Book Details:
  • Author : Felix Bittmann
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2021-04-19
  • ISBN : 3110693348
  • Pages : 128 pages

Download or read book Bootstrapping written by Felix Bittmann and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-04-19 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bootstrapping is a conceptually simple statistical technique to increase the quality of estimates, conduct robustness checks and compute standard errors for virtually any statistic. This book provides an intelligible and compact introduction for students, scientists and practitioners. It not only gives a clear explanation of the underlying concepts but also demonstrates the application of bootstrapping using Python and Stata.

Book Statistical Methods in the Atmospheric Sciences

Download or read book Statistical Methods in the Atmospheric Sciences written by Daniel S. Wilks and published by Elsevier. This book was released on 1995-03-01 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces and explains the statistical methods used to describe, analyze, test, and forecast atmospheric data. It will be useful to students, scientists, and other professionals who seek to make sense of the scientific literature in meteorology, climatology, or other geophysical disciplines, or to understand and communicate what their atmospheric data sets have to say. The book includes chapters on exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, time(series analysis, and multivariate data analysis. Worked examples, exercises, and illustrations facilitate understanding of the material; an extensive and up-to-date list of references allows the reader to pursue selected topics in greater depth.Key Features* Presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting* Includes extensive and up-to-date references* Features numerous worked examples and exercises* Contains over 130 illustrations

Book Bootstrapping

    Book Details:
  • Author : Christopher Z. Mooney
  • Publisher : SAGE
  • Release : 1993-08-09
  • ISBN : 9780803953819
  • Pages : 84 pages

Download or read book Bootstrapping written by Christopher Z. Mooney and published by SAGE. This book was released on 1993-08-09 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Book The Jackknife and Bootstrap

Download or read book The Jackknife and Bootstrap written by Jun Shao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.