Download or read book Random Coefficient Autoregressive Models An Introduction written by D.F. Nicholls and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph we have considered a class of autoregressive models whose coefficients are random. The models have special appeal among the non-linear models so far considered in the statistical literature, in that their analysis is quite tractable. It has been possible to find conditions for stationarity and stability, to derive estimates of the unknown parameters, to establish asymptotic properties of these estimates and to obtain tests of certain hypotheses of interest. We are grateful to many colleagues in both Departments of Statistics at the Australian National University and in the Department of Mathematics at the University of Wo110ngong. Their constructive criticism has aided in the presentation of this monograph. We would also like to thank Dr M. A. Ward of the Department of Mathematics, Australian National University whose program produced, after minor modifications, the "three dimensional" graphs of the log-likelihood functions which appear on pages 83-86. Finally we would like to thank J. Radley, H. Patrikka and D. Hewson for their contributions towards the typing of a difficult manuscript. IV CONTENTS CHAPTER 1 INTRODUCTION 1. 1 Introduction 1 Appendix 1. 1 11 Appendix 1. 2 14 CHAPTER 2 STATIONARITY AND STABILITY 15 2. 1 Introduction 15 2. 2 Singly-Infinite Stationarity 16 2. 3 Doubly-Infinite Stationarity 19 2. 4 The Case of a Unit Eigenvalue 31 2. 5 Stability of RCA Models 33 2. 6 Strict Stationarity 37 Appendix 2. 1 38 CHAPTER 3 LEAST SQUARES ESTIMATION OF SCALAR MODELS 40 3.
Download or read book Non Gaussian Autoregressive Type Time Series written by N. Balakrishna and published by Springer Nature. This book was released on 2022-01-27 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.
Download or read book Journal of Statistical Planning and Inference written by North-Holland Publishing Company and published by . This book was released on 2002 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Download or read book Cumulated Index Medicus written by and published by . This book was released on 2000 with total page 1840 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Risk Management Technologies written by E.D. Solozhentsev and published by Springer Science & Business Media. This book was released on 2012-04-27 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology. The volume describes the following components of risk management technologies: LP-calculus; classes of LP-models of risk and efficiency; procedures for different classes; special software for different classes; examples of applications; methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are: LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the discussed procedures of I3-technologies are the construction of LP-models, LP-identification of risk models; LP-risk analysis, LP-management and LP-forecasting of risk. The book further considers LP-models of risk of invalidity of systems and processes in accordance with the requirements of ISO 9001-2008, LP-models of bank operational risks in accordance with the requirements of Basel-2, complex risk LP-models for preventing ammunition depot explosions, enterprise electric power supply systems, debugging tests of technical systems, etc. The book also considers LP-models of credit risks, securities portfolios, operational risks in banking, conteraction of bribes and corruption, etc. A number of applications is given to show the effectiveness of risk management technologies. In addition, topics of lectures and practical computer exercises intended for a two-semester course “Risk management technologies” are suggested.
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Download or read book Econometric Analysis of Cross Section and Panel Data second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Download or read book Index of Mathematical Papers written by and published by . This book was released on 1974 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Modelling and Regression Structures written by Thomas Kneib and published by Springer Science & Business Media. This book was released on 2010-01-12 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions collected in this book have been written by well-known statisticians to acknowledge Ludwig Fahrmeir's far-reaching impact on Statistics as a science, while celebrating his 65th birthday. The contributions cover broad areas of contemporary statistical model building, including semiparametric and geoadditive regression, Bayesian inference in complex regression models, time series modelling, statistical regularization, graphical models and stochastic volatility models.
Download or read book Generalized Linear Models written by Jeff Gill and published by SAGE Publications. This book was released on 2000-08-07 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author explains the theoretical underpinnings of generalized linear models so that researchers can decide how to select the best way to adapt their data for this type of analysis. Examples are provided to illustrate the application of GLM to actual data and the author includes his Web address where additional resources can be found.
Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Download or read book Current Index to Statistics Applications Methods and Theory written by and published by . This book was released on 1999 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistics with Confidence written by Douglas Altman and published by John Wiley & Sons. This book was released on 2013-06-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly popular introduction to confidence intervals has been thoroughly updated and expanded. It includes methods for using confidence intervals, with illustrative worked examples and extensive guidelines and checklists to help the novice.
Download or read book Comprehensive Dissertation Index written by and published by . This book was released on 1989 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: