EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Understanding Colloidal Quantum Dot Excitation with Solution Photon Correlation Fourier Spectroscopy

Download or read book Understanding Colloidal Quantum Dot Excitation with Solution Photon Correlation Fourier Spectroscopy written by Stephanie Leigh Heathcote and published by . This book was released on 2015 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: Colloidal quantum dots (CQDs) have useful absorption and emission properties but exist in inhomogenous batches. Solution photon correlation fourier spectroscopy (S-PCFS) combines interferometry with fluorescence correlation spectroscopy (FCS) to measure the spectral correlation of the average single fluorophore in a solution. With S-PCFS, the intrinsic emission linewidth of CQDs can be assessed. This linewidth information is related to phonon coupling and gives insight into the separation of holes and electrons in excited CQDs. Experimental considerations and recommendations for troubleshooting a S-PCFS apparatus are also presented here.

Book Spectral Dynamics of Single Quantum Dots

Download or read book Spectral Dynamics of Single Quantum Dots written by Lisa Faye Marshall and published by . This book was released on 2011 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional single-molecule fluorescence spectroscopy is limited in temporal resolution by the need to collect enough photons to measure a spectrum, in frequency resolution by the dispersing power of the spectrometer, and by environmental conditions by the need to immobilize the chromophore on a substrate. In this thesis, we use the recently developed technique of photon-correlation Fourier spectroscopy (PCFS) to circumvent each of these limitations. PCFS combines the high temporal resolution of photon correlation measurements with the high frequency resolution of Fourier spectroscopy. The experimental setup consists of a Michelson interferometer where the two outputs are detected with avalanche photodiodes and cross-correlated with a hardware autocorrelator card. The interferometer maps spectral changes into intensity changes which can be measured with high temporal resolution by the autocorrelator. The distribution of spectral changes between photons with a given temporal separation determines the degree of correlation in the interferogram. By measuring the intensity correlation at different interferometer positions while dithering one mirror, a time dependent spectral correlation function is obtained. From this, we learn about the temporal evolution of the emission line shape at timescales approaching the lifetime of the emitter. In this body of work, we both apply PCFS to study low temperature colloidal quantum dots and extend the technique to extract spectral lineshapes and dynamics of single quantum dots freely diffusing in solution. In solution, spectral correlations originating from the same quantum dot are statistically enhanced and separable from the ensemble using intensity fluctuations from diffusion. We are able to use spectral correlations from many diffusing chromophores to determine the average single chromophore spectral correlation. This thesis begins with a review of spectral dynamics in quantum dots in Chapter 1. Chapters 2 and 3 describe the theoretical and experimental implementation of PCFS. Chapters 4 and 5 cover numerical simulations and experimental demonstrations of the extension of PCFS to single quantum dots obscured by an ensemble in solution. Finally, chapter 6 applies PCFS to single quantum dots at liquid helium temperatures.

Book Investigating Photophysics in Colloidal Semiconductor Quantum Dots Through Photon correlation Methods

Download or read book Investigating Photophysics in Colloidal Semiconductor Quantum Dots Through Photon correlation Methods written by Weiwei Sun (Chemist) and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Colloidal semiconductor quantum dots (QDs) exhibit interesting photophysical properties due to their quantum-confined nature. Due to their bright and stable photoluminescence, they have been widely used in a variety of applications, including lasing, light emitting diodes (LEDs), solar cells, biological imaging, and most recently quantum information science. Numerous efforts have been made to optimize these QDs to improve their performance, which all require the establishment of an efficient feedback loop between optical properties and synthesis. Spectroscopic studies on their PL properties would inform us about the nature of QD emission and point new directions for future design and optimization of QDs. In this thesis, I will use photon-correlation-based spectroscopy, a powerful toolkit with both high temporal and spectral resolutions, to investigate the exciton photo-physics inside these QDs to build a complete understanding of the exciton dynamics in cesium lead halide and CdSe/CdS quantum dots. In the first two chapters, I will build a foundation on the understanding of semiconductor quantum dots, quantum emitters, and single particle spectroscopic techniques. In the next two chapters, I will use photon-correlation Fourier spectroscopy (PCFS) to investigate single particle optical coherence properties, to demonstrate cesium lead halide perovskite quantum dots (PQDs) as the next-generation quantum emitter materials for quantum information science, and investigate their dephasing mechanisms at cryogenic temperatures. In the next chapter, I will switch gears to CdSe/CdS quantum dots to develop the first-time all-optical deterministic blinking control method and explain the mechanisms behind it. Finally, I will present a few interesting and unexplored ideas in understanding the nature of fine structure states in PQDs and the integration of nanophotonic cavities to achieve true transform-limited single quantum emitters and large-scale generation.

Book Colloidal Quantum Dot Optoelectronics and Photovoltaics

Download or read book Colloidal Quantum Dot Optoelectronics and Photovoltaics written by Gerasimos Konstantatos and published by Cambridge University Press. This book was released on 2013-11-07 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Download or read book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics written by Mohamed Henini and published by Elsevier. This book was released on 2011-07-28 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual

Book Advanced Photon Counting

Download or read book Advanced Photon Counting written by Peter Kapusta and published by Springer. This book was released on 2015-04-23 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a “fingerprint” for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.

Book Nanocrystal Quantum Dots

Download or read book Nanocrystal Quantum Dots written by Victor I. Klimov and published by CRC Press. This book was released on 2017-12-19 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Book Colloidal Semiconductor Nanocrystals  Synthesis  Properties  and Applications

Download or read book Colloidal Semiconductor Nanocrystals Synthesis Properties and Applications written by Vladimir Lesnyak and published by Frontiers Media SA. This book was released on 2020-01-06 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tuning Semiconducting and Metallic Quantum Dots

Download or read book Tuning Semiconducting and Metallic Quantum Dots written by Christian von Borczyskowski and published by CRC Press. This book was released on 2017-03-27 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology is one of the growing areas of this century, also opening new horizons for tuning optical properties. This book introduces basic tuning schemes, including those on a single quantum object level, with an emphasis on surface and interface manipulation of semiconducting and metallic quantum dots. There are two opposing demands in current forefront applications of quantum dots as optical labels, namely high luminescence stability (suppression of luminescence intermittency) and controllable intermittency and bleaching on a single-particle level to facilitate super-resolution optical microscopy (for which Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded the 2014 Nobel Prize in Chemistry). The book discusses these contradictory demands with respect to both an understanding of the basic processes and applications. The chapters are a combination of scholarly presentation and comprehensive review and include case studies from the authors’ research, including unpublished results. Special emphasis is on a detailed understanding of spectroscopic and dynamic properties of semiconducting quantum dots. The book is suitable for senior undergraduates and researchers in the fields of optical nanoscience, materials science, and nanotechnology.

Book Introductory Quantum Optics

    Book Details:
  • Author : Christopher Gerry
  • Publisher : Cambridge University Press
  • Release : 2005
  • ISBN : 9780521527354
  • Pages : 338 pages

Download or read book Introductory Quantum Optics written by Christopher Gerry and published by Cambridge University Press. This book was released on 2005 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Self Assembled Quantum Dots

Download or read book Self Assembled Quantum Dots written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.

Book Principles of Fluorescence Spectroscopy

Download or read book Principles of Fluorescence Spectroscopy written by Joseph R. Lakowicz and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles.

Book Single Quantum Dots

    Book Details:
  • Author : Peter Michler
  • Publisher : Springer Science & Business Media
  • Release : 2003-12-09
  • ISBN : 9783540140221
  • Pages : 370 pages

Download or read book Single Quantum Dots written by Peter Michler and published by Springer Science & Business Media. This book was released on 2003-12-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.

Book Advances in Density Functional Theory

Download or read book Advances in Density Functional Theory written by and published by Academic Press. This book was released on 1998-10-27 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics can describe the detailed structure and behavior of matter, from electrons, atoms, and molecules, to the whole universe. It is one of the fields of knowledge that yield extraordinary precessions, limited only by the computational resources available. Among these methods is density functional theory (DFT), which permits one to solve the equations of quantum mechanics more efficiently than with any related method.The present volume represents the most comprehensive summary currently available in density functional theory and its applications in chemistry from atomic physics to molecular dynamics. DFT is currently being used by more than fifty percent of computational chemists.

Book Applied Nanophotonics

    Book Details:
  • Author : Sergey V. Gaponenko
  • Publisher : Cambridge University Press
  • Release : 2019
  • ISBN : 1107145503
  • Pages : 453 pages

Download or read book Applied Nanophotonics written by Sergey V. Gaponenko and published by Cambridge University Press. This book was released on 2019 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Book Dynamic Light Scattering

    Book Details:
  • Author : R. Pecora
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1461323894
  • Pages : 429 pages

Download or read book Dynamic Light Scattering written by R. Pecora and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the twenty years since their inception, modern dynamic light-scattering techniques have become increasingly sophisticated, and their applications have grown exceedingly diverse. Applications of the techniques to problems in physics, chemistry, biology, medicine, and fluid mechanics have prolifer ated. It is probably no longer possible for one or two authors to write a monograph to cover in depth the advances in scattering techniques and the main areas in which they have made a major impact. This volume, which we expect to be the first of aseries, presents reviews of selected specialized areas by renowned experts. It makes no attempt to be comprehensive; it emphasizes a body of related applications to polymeric, biological, and colloidal systems, and to critical phenomena. The well-known monographs on dynamic light scattering by Berne and Pecora and by Chu were published almost ten years ago. They provided comprehensive treatments of the general principles of dynamic light scat tering and gave introductions to a wide variety of applications, but natu rally they could not treat the new applications and advances in older ones that have arisen in the last decade. The new applications include studies of interacting particles in solution (Chapter 4); scaling approaches to the dynamics of polymers, including polymers in semidilute solution (Chapter 5); the use of both Fabry-Perot interferometry and photon correlation spectroscopy to study bulk polymers (Chapter 6); studies of micelIes and microemulsions (Chapter 8); studies of polymer gels (Chapter 9).