Download or read book Ultimate Parallel and Distributed Computing with Julia For Data Science written by Nabanita Dash and published by Orange Education Pvt Ltd. This book was released on 2024-01-03 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash Julia’s power: Code Your Data Stories, Shape Machine Intelligence! KEY FEATURES ● Comprehensive Learning Journey from fundamentals of Julia ML to advanced techniques. ● Immersive practical approach with real-world examples, exercises, and scenarios, ensuring immediate application of acquired knowledge. ● Delve into the unique features of Julia and unlock its true potential to excel in modern ML applications. DESCRIPTION This book takes you through a step-by-step learning journey, starting with the essentials of Julia's syntax, variables, and functions. You'll unlock the power of efficient data handling by leveraging Julia arrays and DataFrames.jl for insightful analysis. Develop expertise in both basic and advanced statistical models, providing a robust toolkit for deriving meaningful data-driven insights. The journey continues with machine learning proficiency, where you'll implement algorithms confidently using MLJ.jl and MLBase.jl, paving the way for advanced data-driven solutions. Explore the realm of Bayesian inference skills through practical applications using Turing.jl, enhancing your ability to extract valuable insights. The book also introduces crucial Julia packages such as Plots.jl for visualizing data and results. The handbook culminates in optimizing workflows with Julia's parallel and distributed computing capabilities, ensuring efficient and scalable data processing using Distributions.jl, Distributed.jl and SharedArrays.jl. This comprehensive guide equips you with the knowledge and practical insights needed to excel in the dynamic field of data science and machine learning. WHAT WILL YOU LEARN ● Master Julia ML Basics to gain a deep understanding of Julia's syntax, variables, and functions. ● Efficient Data Handling with Julia arrays and DataFrames for streamlined and insightful analysis. ● Develop expertise in both basic and advanced statistical models for informed decision-making through Statistical Modeling. ● Achieve Machine Learning Proficiency by confidently implementing ML algorithms using MLJ.jl and MLBase.jl. ● Apply Bayesian Inference Skills with Turing.jl for advanced modeling techniques. ● Optimize workflows using Julia's Parallel Processing Capabilities and Distributed Computing for efficient and scalable data processing. WHO IS THIS BOOK FOR? This book is designed to be a comprehensive and accessible companion for anyone eager to excel in machine learning and data analysis using Julia. Whether you are a novice or an experienced practitioner, the knowledge and skills imparted within these pages will empower you to navigate the complexities of modern data science with Julia. TABLE OF CONTENTS 1. Julia In Data Science Arena 2. Getting Started with Julia 3. Features Assisting Scaling ML Projects 4. Data Structures in Julia 5. Working With Datasets In Julia 6. Basics of Statistics 7. Probability Data Distributions 8. Framing Data in Julia 9. Working on Data in DataFrames 10. Visualizing Data in Julia 11. Introducing Machine Learning in Julia 12. Data and Models 13. Bayesian Statistics and Modeling 14. Parallel Computation in Julia 15. Distributed Computation in Julia Index
Download or read book Mastering Julia written by Malcolm Sherrington and published by Packt Publishing Ltd. This book was released on 2024-01-19 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on, code-based guide to leveraging Julia in a variety of scientific and data-driven scenarios Key Features Augment your basic computing skills with an in-depth introduction to Julia Focus on topic-based approaches to scientific problems and visualisation Build on prior knowledge of programming languages such as Python, R, or C/C++ Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionJulia is a well-constructed programming language which was designed for fast execution speed by using just-in-time LLVM compilation techniques, thus eliminating the classic problem of performing analysis in one language and translating it for performance in a second. This book is a primer on Julia’s approach to a wide variety of topics such as scientific computing, statistics, machine learning, simulation, graphics, and distributed computing. Starting off with a refresher on installing and running Julia on different platforms, you’ll quickly get to grips with the core concepts and delve into a discussion on how to use Julia with various code editors and interactive development environments (IDEs). As you progress, you’ll see how data works through simple statistics and analytics and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks. You’ll also and observe how Julia can cooperate with external processes to enhance graphics and data visualization. Finally, you will explore metaprogramming and learn how it adds great power to the language and establish networking and distributed computing with Julia. By the end of this book, you’ll be confident in using Julia as part of your existing skill set.What you will learn Develop simple scripts in Julia using the REPL, code editors, and web-based IDEs Get to grips with Julia’s type system, multiple dispatch, metaprogramming, and macro development Interact with data files, tables, data frames, SQL, and NoSQL databases Delve into statistical analytics, linear programming, and optimization problems Create graphics and visualizations to enhance modeling and simulation in Julia Understand Julia's main approaches to machine learning, Bayesian analysis, and AI Who this book is for This book is not an introduction to computer programming, but a practical guide for developers who want to enhance their basic knowledge of Julia, or those wishing to augment their skill set by adding Julia to their existing roster of programming languages. Familiarity with a scripting language such as Python or R, or a compiled language such as C/C++, C# or Java, is a prerequisite.
Download or read book Think Julia written by Ben Lauwens and published by O'Reilly Media. This book was released on 2019-04-05 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies
Download or read book Cloud Computing for Science and Engineering written by Ian Foster and published by MIT Press. This book was released on 2017-09-29 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The emergence of powerful, always-on cloud utilities has transformed how consumers interact with information technology, enabling video streaming, intelligent personal assistants, and the sharing of content. Businesses, too, have benefited from the cloud, outsourcing much of their information technology to cloud services. Science, however, has not fully exploited the advantages of the cloud. Could scientific discovery be accelerated if mundane chores were automated and outsourced to the cloud? Leading computer scientists Ian Foster and Dennis Gannon argue that it can, and in this book offer a guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The book surveys the technology that underpins the cloud, new approaches to technical problems enabled by the cloud, and the concepts required to integrate cloud services into scientific work. It covers managing data in the cloud, and how to program these services; computing in the cloud, from deploying single virtual machines or containers to supporting basic interactive science experiments to gathering clusters of machines to do data analytics; using the cloud as a platform for automating analysis procedures, machine learning, and analyzing streaming data; building your own cloud with open source software; and cloud security. The book is accompanied by a website, Cloud4SciEng.org, that provides a variety of supplementary material, including exercises, lecture slides, and other resources helpful to readers and instructors.
Download or read book Hands On Data Science with Anaconda written by Yuxing Yan and published by Packt Publishing Ltd. This book was released on 2018-05-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develop, deploy, and streamline your data science projects with the most popular end-to-end platform, Anaconda Key Features -Use Anaconda to find solutions for clustering, classification, and linear regression -Analyze your data efficiently with the most powerful data science stack -Use the Anaconda cloud to store, share, and discover projects and libraries Book Description Anaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You’ll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You’ll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you’re accustomed to all this, you’ll start with operations in data science such as cleaning, sorting, and data classification. You’ll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you’ll learn how to visualize data using the packages available for Julia, Python, and R. What you will learn Perform cleaning, sorting, classification, clustering, regression, and dataset modeling using Anaconda Use the package manager conda and discover, install, and use functionally efficient and scalable packages Get comfortable with heterogeneous data exploration using multiple languages within a project Perform distributed computing and use Anaconda Accelerate to optimize computational powers Discover and share packages, notebooks, and environments, and use shared project drives on Anaconda Cloud Tackle advanced data prediction problems Who this book is for Hands-On Data Science with Anaconda is for you if you are a developer who is looking for the best tools in the market to perform data science. It’s also ideal for data analysts and data science professionals who want to improve the efficiency of their data science applications by using the best libraries in multiple languages. Basic programming knowledge with R or Python and introductory knowledge of linear algebra is expected.
Download or read book Data Science from Scratch written by Steven Cooper and published by Roland Bind. This book was released on 2018-08-10 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: ★☆If you are looking to start a new career that is in high demand, then you need to continue reading!★☆ Data scientists are changing the way big data is used in different institutions. Big data is everywhere, but without the right person to interpret it, it means nothing. So where do business find these people to help change their business? You could be that person! It has become a universal truth that businesses are full of data. With the use of big data, the US healthcare could reduce their health-care spending by $300 billion to $450 billion. It can easily be seen that the value of big data lies in the analysis and processing of that data, and that's where data science comes in. ★★ Grab your copy today and learn ★★ ♦ In depth information about what data science is and why it is important. ♦ The prerequisites you will need to get started in data science. ♦ What it means to be a data scientist. ♦ The roles that hacking and coding play in data science. ♦ The different coding languages that can be used in data science. ♦ Why python is so important. ♦ How to use linear algebra and statistics. ♦ The different applications for data science. ♦ How to work with the data through munging and cleaning ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. As businesses and the internet change, so will data science. This means it's important to be flexible. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started in a new, ever growing, career, don't wait any longer. Scroll up and click the buy now button to get this book today!
Download or read book Statistics with Julia written by Yoni Nazarathy and published by Springer Nature. This book was released on 2021-09-04 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book’s associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With “Statistics with Julia”, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.
Download or read book Big Data Analytics in Cybersecurity written by Onur Savas and published by CRC Press. This book was released on 2017-09-18 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
Download or read book Julia for Data Analysis written by Bogumil Kaminski and published by Simon and Schuster. This book was released on 2023-01-10 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master core data analysis skills using Julia. Interesting hands-on projects guide you through time series data, predictive models, popularity ranking, and more. In Julia for Data Analysis you will learn how to: Read and write data in various formats Work with tabular data, including subsetting, grouping, and transforming Visualize your data Build predictive models Create data processing pipelines Create web services sharing results of data analysis Write readable and efficient Julia programs Julia was designed for the unique needs of data scientists: it's expressive and easy-to-use whilst also delivering super-fast code execution. Julia for Data Analysis shows you how to take full advantage of this amazing language to read, write, transform, analyze, and visualize data—everything you need for an effective data pipeline. It’s written by Bogumil Kaminski, one of the top contributors to Julia, #1 Julia answerer on StackOverflow, and a lead developer of Julia’s core data package DataFrames.jl. Its engaging hands-on projects get you into the action quickly. Plus, you’ll even be able to turn your new Julia skills to general purpose programming! Foreword by Viral Shah. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Julia is a great language for data analysis. It’s easy to learn, fast, and it works well for everything from one-off calculations to full-on data processing pipelines. Whether you’re looking for a better way to crunch everyday business data or you’re just starting your data science journey, learning Julia will give you a valuable skill. About the book Julia for Data Analysis teaches you how to handle core data analysis tasks with the Julia programming language. You’ll start by reviewing language fundamentals as you practice techniques for data transformation, visualizations, and more. Then, you’ll master essential data analysis skills through engaging examples like examining currency exchange, interpreting time series data, and even exploring chess puzzles. Along the way, you’ll learn to easily transfer existing data pipelines to Julia. What's inside Read and write data in various formats Work with tabular data, including subsetting, grouping, and transforming Create data processing pipelines Create web services sharing results of data analysis Write readable and efficient Julia programs About the reader For data scientists familiar with Python or R. No experience with Julia required. About the author Bogumil Kaminski iis one of the lead developers of DataFrames.jl—the core package for data manipulation in the Julia ecosystem. He has over 20 years of experience delivering data science projects. Table of Contents 1 Introduction PART 1 ESSENTIAL JULIA SKILLS 2 Getting started with Julia 3 Julia’s support for scaling projects 4 Working with collections in Julia 5 Advanced topics on handling collections 6 Working with strings 7 Handling time-series data and missing values PART 2 TOOLBOX FOR DATA ANALYSIS 8 First steps with data frames 9 Getting data from a data frame 10 Creating data frame objects 11 Converting and grouping data frames 12 Mutating and transforming data frames 13 Advanced transformations of data frames 14 Creating web services for sharing data analysis results
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2020-11-17 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Download or read book Fluent Python written by Luciano Ramalho and published by "O'Reilly Media, Inc.". This book was released on 2022-03-31 with total page 1011 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python's simplicity lets you become productive quickly, but often this means you aren't using everything it has to offer. With the updated edition of this hands-on guide, you'll learn how to write effective, modern Python 3 code by leveraging its best ideas. Don't waste time bending Python to fit patterns you learned in other languages. Discover and apply idiomatic Python 3 features beyond your past experience. Author Luciano Ramalho guides you through Python's core language features and libraries and teaches you how to make your code shorter, faster, and more readable. Featuring major updates throughout the book, Fluent Python, second edition, covers: Special methods: The key to the consistent behavior of Python objects Data structures: Sequences, dicts, sets, Unicode, and data classes Functions as objects: First-class functions, related design patterns, and type hints in function declarations Object-oriented idioms: Composition, inheritance, mixins, interfaces, operator overloading, static typing and protocols Control flow: Context managers, generators, coroutines, async/await, and thread/process pools Metaprogramming: Properties, attribute descriptors, class decorators, and new class metaprogramming hooks that are simpler than metaclasses.
Download or read book R for Cloud Computing written by A Ohri and published by Springer. This book was released on 2014-11-14 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: R for Cloud Computing looks at some of the tasks performed by business analysts on the desktop (PC era) and helps the user navigate the wealth of information in R and its 4000 packages as well as transition the same analytics using the cloud. With this information the reader can select both cloud vendors and the sometimes confusing cloud ecosystem as well as the R packages that can help process the analytical tasks with minimum effort, cost and maximum usefulness and customization. The use of Graphical User Interfaces (GUI) and Step by Step screenshot tutorials is emphasized in this book to lessen the famous learning curve in learning R and some of the needless confusion created in cloud computing that hinders its widespread adoption. This will help you kick-start analytics on the cloud including chapters on both cloud computing, R, common tasks performed in analytics including the current focus and scrutiny of Big Data Analytics, setting up and navigating cloud providers. Readers are exposed to a breadth of cloud computing choices and analytics topics without being buried in needless depth. The included references and links allow the reader to pursue business analytics on the cloud easily. It is aimed at practical analytics and is easy to transition from existing analytical set up to the cloud on an open source system based primarily on R. This book is aimed at industry practitioners with basic programming skills and students who want to enter analytics as a profession. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. It will also help researchers and academics but at a practical rather than conceptual level. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The cloud computing paradigm is firmly established as the next generation of computing from microprocessors to desktop PCs to cloud.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Data Science with Julia written by Paul D. McNicholas and published by CRC Press. This book was released on 2019-01-02 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Université Côte d’Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Université Côte d’Azur, Nice, France
Download or read book Julia High Performance written by Avik Sengupta and published by Packt Publishing Ltd. This book was released on 2019-06-10 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high-performance programs in Julia 1.0 Key FeaturesLearn the characteristics of high-performance Julia codeUse the power of the GPU to write efficient numerical codeSpeed up your computation with the help of newly introduced shared memory multi-threading in Julia 1.0Book Description Julia is a high-level, high-performance dynamic programming language for numerical computing. If you want to understand how to avoid bottlenecks and design your programs for the highest possible performance, then this book is for you. The book starts with how Julia uses type information to achieve its performance goals, and how to use multiple dispatches to help the compiler emit high-performance machine code. After that, you will learn how to analyze Julia programs and identify issues with time and memory consumption. We teach you how to use Julia's typing facilities accurately to write high-performance code and describe how the Julia compiler uses type information to create fast machine code. Moving ahead, you'll master design constraints and learn how to use the power of the GPU in your Julia code and compile Julia code directly to the GPU. Then, you'll learn how tasks and asynchronous IO help you create responsive programs and how to use shared memory multithreading in Julia. Toward the end, you will get a flavor of Julia's distributed computing capabilities and how to run Julia programs on a large distributed cluster. By the end of this book, you will have the ability to build large-scale, high-performance Julia applications, design systems with a focus on speed, and improve the performance of existing programs. What you will learnUnderstand how Julia code is transformed into machine codeMeasure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Accelerate your code via the GPUUse tasks and asynchronous IO for responsive programsRun Julia programs on large distributed clustersWho this book is for This book is for beginners and intermediate Julia programmers who are interested in high-performance technical programming. A basic knowledge of Julia programming is assumed.
Download or read book Learning Julia written by Anshul Joshi and published by Packt Publishing Ltd. This book was released on 2017-11-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.
Download or read book Julia Programming Projects written by Adrian Salceanu and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key FeaturesWork with powerful open-source libraries for data wrangling, analysis, and visualizationDevelop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with JuliaBook Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learnLeverage Julia's strengths, its top packages, and main IDE optionsAnalyze and manipulate datasets using Julia and DataFramesWrite complex code while building real-life Julia applicationsDevelop and run a web app using Julia and the HTTP packageBuild a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithmsPerform time series data analysis, visualization, and forecastingWho this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.