Download or read book Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit Learn Keras Dan TensorFlow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-19 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Download or read book SEVEN BOOKS IN ONE Sinyal Digital Citra Digital Machine Learning Deep Learning dan Data Science dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-24 with total page 2192 pages. Available in PDF, EPUB and Kindle. Book excerpt: BUKU 1: Konsep dan Implementasi Pemrograman Python Buku ini merupakan buku teks pemrograman komputer menggunakan Python yang difokuskan untuk pembelajaran efektif. Sengaja dirancang untuk pelbagai tingkat ketertarikan dan kemampuan pembelajar, buku ini cocok untuk siswa SMA/SMK, mahasiswa, insinyur, dan bahkan peneliti dalam berbagai displin ilmu. Tidak ada pengalaman pemrograman yang diperlukan, dan hanya sedikit kemampun aljabar tingkat sekolah menenga atas yang diperlukan. Buku ini memang dirancang untuk mengambil rute tradisional, dengan lebih dahulu menekankan sintaksis-sintaksis dasar, struktur-struktur kendali, fungsi, dekomposisi prosedural, dan struktur data built-in seperti list, set, dan kamus (dictionary). Panduan langkah-demi-langkah di dalamnya diharapkan bisa membantu kepercayaan diri pembaca untuk menjadi programer yang bisa menyelesaikan permasalahan-permasalahan pemrograman. Sejumlah contoh disediakan untuk mendemonstrasikan bagaimana menerapkan konsep-konsep yang telah disajikan terhadap sejumlahan tantangan pemrograman. Pada Bab 1, Anda akan diajari mengenal IDE Spyder untuk memprogram Python dan mengetahui sintaksis dasar dari program sederhana Python. Pada Bab 2, Anda akan belajar: Mendefinisikan dan menggunakan variabel dan konstanta; Memahami sejumlah watak dan keterbatasan bilangan integer (bilangan bulat) dan titik-mengambang (bilangan pecahan); Memahami pentingnya komentar dan tataletak kode; Menulis ekspresi aritmatik dan statemen penugasan; Menciptakan program yang membaca dan memproses masukan, dan menampilkan hasilnya; Bagaimana menggunakan string Python; Menciptakan program grafika menggunakan sejumlah bangun dasar dan teks. Pada Bab 3, Anda akan belajar: Mengimplementasikan keputusan menggunakan statemen if; Membandingkan bilangan integer, titik-mengambang, dan string; Menuliskan statemen menggunakan ekspresi Boolean; Memvalidasi masukan user. Pada Bab 4, Anda akan belajar: Mengimplementasikan loop while dan for; Menjadi familiar dengan algoritma-algoritma yang melibatkan loop; Memahami loop bersarang; Memproses string. Pada Bab 5, Anda akan belajar: Bagaimana mengimplementasikan fungsi; Menjadi familiar dengan konsep pelewatan parameter; Mengembangkan strategi pendekomposisian pekerjaan kompleks menjadi pekerjaan-pekerjaan yang lebih mudah; Mampu menentukan skop variabel. Pada Bab 6, Anda akan belajar: Mengumpulkan elemen-elemen menggunkan list; Menggunakan loop for untuk menjelajah list; Menggunakan sejumlah algoritma umum untuk memproses list; Menggunakan list dengan fungsi; Bekerja dengan tabel data. Pada Bab 7, Anda akan belajar: Membangun dan menggunakan kontainer set; Menggunakan operasi-operasi set untuk memproses data; Membangun dan menggunakan kontainer dictionary; Menggunakan dictionary untuk tabel; Menggunakan struktur kompleks. BUKU 2: SINYAL DAN CITRA DIGITAL dengan PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan belajar bagaimana menggunakan OpenCV, NumPy dan sejumlah pustaka lain untuk melakukan pemrosesan sinyal, pemrosesan citra, deteksi objek, dan ekstraksi fitur dengan memanfaatkan Python GUI (PyQt). Anda akan belajar cara memfilter sinyal, mendeteksi tepi dan segmen, dan menekan derau pada citra dengan memanfaatkan PyQt. Anda juga akan belajar cara mendeteksi objek (wajah, mata, dan mulut) menggunakan Haar Cascades dan cara mendeteksi fitur pada citra menggunakan Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), dan Features from Accelerated Uji Segmen (FAST). Pada bab 1, Anda akan mempelajari secara langkah demi langkah: membuat aplikasi gui sederhana; menggunakan tombol radio; mengelompokkan tombol radio; menggunakan widget kotak centang; menggunakan dua grup kotak centang; memahami sinyal dan slot; mengonversi jenis data; menggunakan widget spin box; menggunakan scrollbar dan slider; menggunakan list widget; menggunakan kotak kombo; dan menggunakan widget Table. Pada bab 2, Anda akan mempelajari secara langkah demi langkah: membuat grafik garis sederhana; membuat grafik garis sederhana dengan python gui; membuat grafik garis sederhana dengan python gui: bagian 2; membuat dua atau lebih banyak grafik di sumbu yang sama;membuat dua sumbu dalam satu kanvas; menggunakan dua widget;menggunakan dua widget, masing-masing memiliki dua sumbu; menggunakan sumbu dengan tingkat opacity tertentu; memilih warna garis dari combo box; menghitung fast fourier transform; membuat gui untuk FFT; membuat gui untuk FFT dengan beberapa sinyal input lain; membuat gui untuk sinyal bising; membuat gui untuk penapisan sinyal berderau; dan membuat gui untuk penapisan sinyal wav. Pada bab 3, Anda akan mempelajari secara langkah demi langkah: mengkonversi citra RGB menjadi grayscale; mengubah citra RGB menjadi citra YUV; mengkonversi citra RGB menjadi citra HSV; memfilter citra; menampilkan histogram citra; menampilkan histogram citra tertapis; memfilter citra dengan memanfaatkan opsi pada kotak centang; menerapkan ambang batas citra; dan menerapkan ambang batas citra adaptif. Pada bab 4, Anda akan mempelajari secara langkah demi langkah: membangkitkan dan menampilkan citra berderau; menerapkan deteksi tepi pada citra; menerapkan segmentasi citra menggunakan algoritma multiple thresholding dan k-means; dan menerapkan penekanan derau citra. Pada bab 5, Anda akan mempelajari secara langkah demi langkah: mendeteksi wajah, mata, dan mulut menggunakan haar cascades; mendeteksi wajah menggunakan haar cascades dengan pyqt; mendeteksi mata, dan mulut menggunakan haar cascades dengan pyqt; dan mengekstraksi objek yang terdeteksi. Pada bab 6, Anda akan mempelajari secara langkah demi langkah: mendeteksi fitur citra menggunakan deteksi harris corner; mendeteksi fitur citra menggunakan deteksi sudut shi-tomasi; mendeteksi fitur citra menggunakan Scale-Invariant Feature Transform (SIFT); dan mendeteksi fitur citra menggunakan Features from Accelerated Uji Segmen (FAST). BUKU 3: IMPLEMENTASI MACHINE LEARNING DENGAN PYTHON GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI”. Anda bisa mengaksesnya di Amazon maupun di Google Books. Pada buku ini, Anda akan mempelajari cara menggunakan NumPy, Pandas, OpenCV, Scikit-Learn, dan pustaka lain untuk memplot grafik dan memproses citra digital. Kemudian, Anda akan mempelajari cara mengklasifikasikan fitur menggunakan model Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan K-Nearest Neighbor (KNN). Anda juga akan belajar cara mengekstraksi fitur menggunakan algoritma Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) dan menggunakannya dalam pembelajaran mesin (machine learning). Pada Bab 1, Anda akan mempelajari dasar-dasar penggunakan Python GUI dengan Qt Designer. Pada Bab 2, Anda akan mempelajari: Langkah-Langkah Menciptakan Grafik Garis Sederhana; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 1; Langkah-Langkah Menampilkan Grafik Garis dengan Python GUI: Bagian 2; Langkah-Langkah Menampilkan Dua atau Lebih Grafik pada Sumbu yang Sama; Langkah-Langkah Menciptakan Dua Sumbu pada Satu Canvas; Langkah-Langkah Menggunakan Dua Widget; Langkah-Langkah Menggunakan Dua Widget, Masing-Masing Memiliki Dua Sumbu; Langkah-Langkah Menggunakan Sumbu dengan Tingkat Keburaman Tertentu; Langkah-Langkah Memilih Warna Garis dari Combo Box; Langkah-Langkah Menghitung Fast Fourier Transform; Langkah-Langkah Menciptakan GUI untuk FFT; Langkah-Langkan Menciptakan GUI untuk FFT atas Sinyal-Sinyal Masukan Lain; Langkah-Langkah Menciptakan GUI untuk Sinyal Berderau; Langkah-Langkah Menciptakan GUI untuk Penapisan Sinyal Berderau; Langkah-Langkah Mencipakan GUI untuk Penapisan Sinyal Wav; Langkah-Langkah Mengkonversi Citra RGB Menjadi Keabuan; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra YUV; Langkah-Langkah Mengkonversi Citra RGB Menjadi Citra HSV; Langkah-Langkah Menapis Citra; Langkah-Langkah Menampilkan Histogram Citra ; Langkah-Langkah Menampilkan Histogram Citra Tertapis; Langkah-Langkah Menapis Citra: Memanfaatkan CheckBox; Langkah-Langkah Mengimplementasikan Ambang Batas Citra; dan Langkah-Langkah Mengimplementasikan Ambang Batas Adaptif. Pada Bab 3, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron; Langkah-Langkah Implementasi Perceptron dengan PyQt; Langkah-Langkah Implementasi Adaline (ADAptive LInear NEuron); dan Langkah-Langkah Implementasi Adaline dengan PyQt. Pada Bab 4, Anda akan mempelajari: Langkah-Langkah Implementasi Perceptron Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression (LR); Langkah-Langkah Implementasi Model Logistic Regression dengan PyQt; Langkah-Langkah Implementasi Model Logistic Regression Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Mode Support Vector Machine (SVM) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Decision Tree (DT) Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Model Random Forest (RF) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Model K-Nearest Neighbor (KNN) Menggunakan Scikit-Learn. Pada Bab 5, Anda akan mempelajari: Langkah-Langkah Implementasi Principal Component Analysis (PCA); Langkah-Langkah Implementasi Principal Component Analysis (PCA); Menggunakan Scikit-Learn; Langkah-Langkah Implementasi Principal Component Analysis (PCA) Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA) dengan scikit-learn; Langkah-Langkah Implementasi Linear Discriminant Analysis (LDA); Menggunakan Scikit-Learn dengan PyQt; Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn; dan Langkah-Langkah Implementasi Kernel Principal Component Analysis (KPCA) Menggunakan Scikit-Learn dengan PyQt. Pada Bab 6, Anda akan mempelajari: Langkah-Langkah Memuat Dataset MNIST; Langkah-Langkah Memuat Dataset MNIST dengan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Perceptron dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Logistic Regression (LR) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Support Vector Machine (SVM) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Decision Tree (DT) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi Random Forest (RF) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur PCA pada Dataset MNIST Menggunakan PyQt; Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur LDA pada Dataset MNIST Menggunakan PyQt; dan Langkah-Langkah Implementasi K-Nearest Neighbor (KNN) dengan Ekstraktor Fitur KPCA pada Dataset MNIST Menggunakan PyQt. Pada Bab 7, Anda akan mempelajari: Langkah-Langkah Membangkitkan dan Menampilkan Citra Berderau; Langkah-Langkah Mengimplemantasikan Deteksi Tepi pada Citra; Langkah-Langkah Mengimplementasikan Segmentasi Menggunakan Ambang Batas Jamak dan Algoritma K-Means; Langkah-Langkah Mengimplementasikan Penekanan Derau pada Citra; Langkah-Langkah Mendeteksi Wajah, Mata, dan Mulut dengan Haar Cascades; Langkah-Langkah Mendeteksi Wajah Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mendeteksi Mata dan Mulut Menggunakan Haar Cascades dengan PyQt; Langkah-Langkah Mengekstraksi Objek-Objek Terdeteksi; Langkah-Langkah Mendeteksi Fitur Citra dengan Harris Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Shi-Tomasi Corner Detection; Langkah-Langkah Mendeteksi Fitur Citra dengan Scale-Invariant Feature Transform (SIFT) ; dan Langkah-Langkah Mendeteksi Fitur Citra dengan Accelerated Segment Test (FAST). BUKU 4: Implementasi DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 5: Panduan Praktis Deep Learning Menggunakan Scikit-Learn, Keras, Dan Tensorflow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 6: Tutorial Langkah Demi Langkah DEEP LEARNING Menggunakan Scikit-Learn, Keras, Dan TensorFlow Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Step by Step Tutorials Image Classification Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Pada bab 1, Anda akan belajar dasar-dasar penggunaan PyQt untuk pemrosesan citra digital. Sejumlah projek Python GUI yang diimplementasikan di sini adalah mengkonversi citra RGB menjadi keabuan, mengkonversi citra RGB menjadi citra YUV, mengkonversi citra RGB menjadi citra HSV, menapis citra, menampilkan histogram citra, menampilkan histogram citra tertapis, dan memanfaatkan widget checkbox untuk penapisan citra, dan menerapkan ambang batas citra. Pada bab 2, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi spesies monyet menggunakan dataset 10 Monkey Species yang disediakan oleh Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Pada tutorial ini, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustakan lain untuk mengklasifikasi batu, kertas, dan gunting menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengklasifikasi pesawat, mobil, dan kapal menggunakan dataset Multiclass-image-dataset-airplane-car-ship yang disediakan oleh Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi face mask menggunakan dataset Face Mask Detection Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. BUKU 7: Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit-Learn, Tensorflow, Dan Keras Dengan Python GUI Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Download or read book Implementasi DEEP LEARNING Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-05-02 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deep learning dalam mengenali rambu lalu lintas menggunakan dataset GTSRB, mendeteksi tumor otak menggunakan dataset MRI Brain Image, mengklasifikasikan gender, dan mengenali ekspresi wajah menggunakan dataset FER2013. Pada bab 1, Anda akan belajar membuat aplikasi GUI untuk menampilkan grafik garis menggunakan PyQt. Anda juga akan belajar bagaimana mengkonversi citra menjadi keabuan, menjadi ruang warna YUV, dan menjadi ruang warna HSV. Bab ini juga mengajarkan bagaimana menampilkan citra dan histogramnya dan merancang GUI untuk mengimplementasikannya. Pada bab 2, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan sejumlah pustaka lain untuk memprediksi digit-digit tulisan tangan menggunakan dataset MNIST. Pada bab 3, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, PIL, Pandas, NumPy, dan pustaka lain untuk mengenali rambu lalu lintas menggunakan dataset GTSRB dari Kaggle. Ada beberapa jenis rambu lalu lintas seperti batas kecepatan, dilarang masuk, rambu lalu lintas, belok kiri atau kanan, anak-anak menyeberang, tidak ada kendaraan berat yang lewat, dll. Klasifikasi rambu lalu lintas adalah proses untuk mengidentifikasi kelas rambu lalu lintas tersebut. Pada proyek Python ini, Anda akan membangun model jaringan saraf tiruan (deep neural network) yang dapat mengklasifikasikan rambu lalu lintas dalam citra ke dalam kategori yang berbeda. Dengan model ini, Anda akan dapat membaca dan memahami rambu lalu lintas yang merupakan pekerjaan yang sangat penting bagi semua kendaraan otonom. Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, Pandas, NumPy dan pustaka lainnya untuk melakukan pendeteksian tumor otak menggunakan dataset Brain Image MRI yang disediakan oleh Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan library lain untuk melakukan klasifikasi gender menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 6, Anda akan mempelajari cara menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka lain untuk melakukan pengenalan ekspresi wajah menggunakan dataset FER2013 yang disediakan oleh Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Download or read book Step by Step Tutorials on Deep Learning Using Scikit Learn Keras and Tensorflow with Python GUI written by Rismon Hasiholan Sianipar and published by Independently Published. This book was released on 2021-04-24 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion.In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT).In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https: //www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose.In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https: //www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose.In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https: //www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https: //www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purp
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Panduan Praktis Deep Learning Menggunakan Scikit Learn Keras Dan Tensorflow Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-05-04 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan deteksi wajah, mata, dan mulut menggunakan Haar Cascades, klasifikasi/prediksi buah, klasifikasi/prediksi kucing/anjing, klasifikasi/prediksi mebel, klasifikasi/prediksi mode (fashion). Pada bab 1, Anda akan belajar bagaimana menggunakan pustaka OpenCV, PIL, NumPy dan pustaka lain untuk melakukan deteksi wajah, mata, dan mulut menggunakan Haar Cascades dengan Python GUI (PyQt). Pada bab 2, Anda akan mempelajari bagaimana memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustaka-pustaka lain untuk mengimplementasikan klasifikasi buah menggunakan dataset Fruits 360 yang disediakan oleh Kaggle (https://www.kaggle.com/moltean/fruits/code). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 3, Anda akan belajar menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk klasifikasi kucing/anjing menggunakan dataset yang disediakan oleh Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 4, Anda akan belajar menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan pustakan lain untuk mendeteksi atau mengklasifikasi mebel menggunakan dataset Furniture Detector yang disediakan oleh Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada bab 5, Anda akan memanfaatkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah modul lain untuk melakukan klasifikasi terhadap citra-citra mode menggunakan dataset Fashion MNIST yang disediakan oleh Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Download or read book Python GUI with SQL Server for Absolute Beginners written by Vivian Siahaan and published by SPARTA PUBLISHING. This book was released on 2019-09-20 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is SQL Server-based python programming. Microsoft SQL Server is robust relational database management system used by so many organizations of various sizes including top fortune 100 companies. SQL Server is a relational database management system (RDBMS) developed and marketed by Microsoft. As a database server, the primary function of the SQL Server is to store and retrieve data used by other applications. Deliberately designed for various levels of programming skill, this book is suitable for students, engineers, and even researchers in various disciplines. There is no need for advanced programming experience, and school-level programming skills are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In the last chapter, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables.
Download or read book Python GUI with MySQL A Step By Step Guide to Database Programming written by Vivian Siahaan and published by SPARTA PUBLISHING. This book was released on 2019-08-13 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to build from scratch a MySQL database management system using PyQt. In designing a GUI, you will make use of the Qt Designer tool. Gradually and step by step, you will be taught how to use MySQL in Python. In the first three chapters, you will learn Basic MySQL statements including how to implement querying data, sorting data, filtering data, joining tables, grouping data, subquerying data, dan setting operators. Aside from learning basic SQL statements, you will also learn step by step how to develop stored procedures in MySQL. First, we introduce you to the stored procedure concept and discuss when you should use it. Then, we show you how to use the basic elements of the procedure code such as create procedure statement, if-else, case, loop, stored procedure’s parameters. In the fourth chapter, you will learn: How PyQt and Qt Designer are used to create Python GUIs; How to create a basic Python GUI that utilizes a Line Edit and a Push Button. In the fifth chapter, you will study: Creating the initial three table in the School database project: Teacher table, Class table, and Subject table; Creating database configuration files; Creating a Python GUI for viewing and navigating the contents of each table. Creating a Python GUI for inserting and editing tables; and Creating a Python GUI to merge and query the three tables. In last chapter, you will learn: Creating the main form to connect all forms; Creating a project that will add three more tables to the school database: the Student table, the Parent table, and the Tuition table; Creating a Python GUI to view and navigate the contents of each table; Creating a Python GUI for editing, inserting, and deleting records in each table; Create a Python GUI to merge and query the three tables and all six tables.
Download or read book VISUAL C NET FOR STUDENTS A Project Based Approach to Develop Desktop Applications written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2020-11-23 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# applications. You need to learn and know in order to be more familiar when applying them to some desktop applications in this book. In chapter two, you will build Throwing Fire program. This program can be played by two human players or human player versus computer. You will use 12 labels, a large control panel, and three control buttons on the form. In the control panel, a smaller panel with two group box controls and a button control are placed. In the first group box, you will use 2 radio buttons; in the second box group, place 4 radio buttons. Next, two timer controls are added to the project. All label controls are used for titles and provide scoring and game information. The large panel (Panel1) is the playing field. Three button controls are used to start / stop a program, set options, and exit the program. One timer control is used to control game animation and another is used to represent the computer's decision process. The second control panel (Panel2) is used to select game options. One group box contains radio buttons which are used to select number of players. A group box contains radio buttons to select the level of difficulty of the game, when playing against a computer. A small button is used to close the options panel. The default properties are set for one-player games with the easiest game difficulty. In chapter three, you will build Roasted Duck Delivery simulation. In this simulation, a number of decisions are needed. The basic idea is to read the order by incoming telephone and tell the delivery scooter to go to the location of the order. You also need to make sure that you always provide a roasted duck ready to be transported by the delivery scooter. The delivery area is a 20 by 20 square grid. The more roasted duck is sold, the more profit it gets. The panel control on the left side of the form contains the delivery grid. On the upper right are group boxes with two label controls to display the time or hour and sale results. The computer monitor (in a picture box) displays order and delivery status using a list box and label control. Another group box contains a roasting oven when the roasted ducks are displayed using eight picture box controls. Two button controls on the group box control the operation of the oven. Group boxes under the oven show how many ducks are ready to be delivered and how many are in the delivery scooter (a button control is to load the roasted duck into the scooter). The two button controls beneath are used to start/pause the game and to stop the game or exit the game. In the area under the form there are several timers for controlling a number of aspects in the program. The delivery grid consists of 400 label controls on 20 rows (marked with numbers) and 20 columns (marked with letters). Here, you will learn how to place controls on a form (or panel in this case) using code (when the program runs, not when designing the form). This mechanism can save time designing the form. In chapter four, you will build a Drone Simulation. In this simulation, you control both vertical and horizontal thrusters to maneuver the ride to the landing pad. You will adjust the landing speed so that it is slow enough so that no accident occurs. You build the form in two stages, the first stage creates two option group boxes, and then the second stage uses both those group boxes as landing controls. Two control panels are placed on the left side of the form: one panel for drawing and another panel for the edge. On the right side of the form, place the two group control boxes. In the first group box, five radio buttons and a check box are added. In the second group box, two radio buttons are placed. In the below section of the form, three buttons are added. Finally, one timer control is added. Then in the form, a group box is added overlap panel. Then, 11 label controls are added to the group box. After that, a progress bar is added. Under the bar, two control panels are added, one high panel and one short panel. In the second (short) panel control, two small label controls are added. Underneath, three button controls are placed. Under these three buttons, a label control is added. For each label control, set the AutoSize property to False to be resized and set (temporarily) the BorderStyle property to FixedSingle so that you can see the edges to facilitate the layout process. In this chapter, you will build Jumper game. In this game, you will move the jumper across the busy road, avoid the tiger, and cross the river with the changing current to get to house safely. You will place four label controls on the top part of the form (set the AutoSize property to False so that it can be resized and the BorderStyle property temporarily becomes FixedSingle so you can see the edges). Then, you use five panel controls below the labels. These panels will be a place for image graphics. Each panel has a width of 16 jumpers or 640 pixels, because one jumper will be given a width of 40 pixels. The first panel will be the jumper house, which will be given a height of 80 pixels. The next panel will become a river, with a height of 120 pixels. The next panel will be a place for tiger, 40 pixels high. Under the snake panel, there is a road panel. This panel will contain three boat lanes. Each boat has a height of 40 pixels, but you will give it a height of 140 pixels (not 120 pixels) to make room for lane markers. The fifth panel is the place where the jumper will begin its journey or leap. This panel will be given a height of 40 pixels. Add the last control panel below the form with three button controls. Then, finally, add four timer controls. Adjust the size of the form so that the panel controls can occupy according to the width of the form.
Download or read book Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit Learn Keras and TensorFlow with PYTHON GUI written by Vivian Siahaan and published by . This book was released on 2021-06-03 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book implements deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).
Download or read book LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-03-03 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: 6.1 Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt.
Download or read book VISUAL C NET A Step By Step Project Based Guide to Develop Desktop Applications written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2020-11-23 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: In chapter one, you will learn to know the properties and events of each control in a Windows Visual C# application. You need to learn and know in order to be more familiar when applying them to some applications in this book. In chapter two, you will build a project so that children can practice basic skills in addition, subtraction, multiplication, and division operations. This Math Game project can be used to choose the types of questions and what factors you want to use. This project has three timing options. Random math problems using values from 0 to 9 will be presented. Timing options are provided to measure accuracy and speed. There are many controls used. Two label controls are used for title information, two for displaying scores. There is a wide label in the middle of the form to display math questions. And, long skinny label is used as separator. Two button controls are used to start and stop question and one button to exit the project. There are three group control boxes. The first group box holds four check box controls that are used to select the type of questions. The second group box holds eleven radio buttons that are used to select values that are used as factors in calculations. The third group box contains three radio button controls for timing options. A scroll bar control rod is used to change the time. In chapter three, you will build Bank Code game. The storage box is locked and can only be opened if you enter the correct digit combination. Combinations can be 2 to 4 non-repetitive digits (range of digits from 1 to 9). After a guess is given, you will be notified of how many digits are right and how many digits are in the right position. Based on this information, you will give another guess. You continue to guess until you get the right combination or until you stop the game. On the left side of the form is a large picture box control. On the right side, two group box controls and two button controls are placed. In the picture box, a control panel is placed. In the panel, there are four label controls (set the AutoSize property to False) and nine button controls. In the first group box control, place three radio buttons. In the second group box control, a text box control is placed. The picture box contains an image of bank and a panel. The label controls in the panel are used to display the combinations entered (the BorderStyle property set to FixedSingle to display the label size). The nine buttons on the panel are used to enter combinations. Radio buttons are used to set options. The buttons (one to start and stop the game and another to exit the project) are used to control game operations. The text box displays the results of the combinations entered. In chapter four, you will build Horse Racing game. This is a simple game. Up to 10 horses will race to the finish line. You guessed two horses that you thought could win the race. By clicking on the Start button, the race will start. All horses will race speed to get to the finish line. Labels are used to display instructions and number of horses in a race. Four button controls are used: two buttons to change number of horses, one button to start the game, and one other button to stop the game. The picture box control is used to load the horse image. A timer control is used to update the horse's movement during the race. In chapter five, you will build Catching Ball game. The bird flew and dropped ball from the sky. Users are challenged to position man under the fallen ball to catch it. Labels are used for instructions and to display game information (remaining time, number of balls captured, and game difficulty level). Two buttons are used to change the game difficulty level, one button to start the game, and another button to stop the game. Picture box controls hold images for man, bird, and ball. In chapter six, you will build Smart Tic Tac Toe game. That said, this is the first game ever programmed on a computer and one that had been programmed by Bill Gates himself when he was a teenager while attending Lakeside School in Seattle. The aim of this game is to win the game on a 3 x 3 grid with the victory of three identical symbols (X or O) on horizontal, diagonal, or vertical lines. The players will play alternately. In this game given two game options: player 1 against player 2 or human player against computer. A smart but simple strategy will be developed for computer logic to be a formidable opponent for humans. In chapter seven, you will build Fighting Plane program. This program can be played by two human players or human player versus computer. The controls of the player are done via the keyboard. Player 1 presses A key to move up, Z key to move down, and S key to throw rudal. When you choose Two players from the Options button, this game can be played by two human players. Player 1 presses the same keys, while player 2 presses key K to move up, M to move down, and key J to throw rudal. All label controls are used for titles and provide scoring and game information. The large panel (Panel1) is the playing field. Three button controls are used to start / stop a program, set options, and exit the program. One timer control is used to control game animation and another is used to represent the computer's decision process. The second control panel (Panel2) is used to select game options. One group box contains radio buttons which are used to select number of players. A group box contains radio buttons to select the level of difficulty of the game, when playing against a computer. A small button is used to close the options panel. The default properties are set for one-player games with the easiest game difficulty.
Download or read book Enter the Animal written by Teya Brooks Pribac and published by Sydney University Press. This book was released on 2021-02-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, grief and spirituality have been jealously guarded as uniquely human experiences. Although non-human animal grief has been acknowledged in recent times, its potency has not been recognised as equal to human grief. Anthropocentric philosophical questions still underpin both academic and popular discussions. In Enter the Animal, Teya Brooks Pribac examines what we do and don’t know about grief and spirituality. She explores the growing body of knowledge about attachment and loss and how they shape the lives of both human and non-human animals. A valuable addition to the vibrant interdisciplinary conversation about animal subjectivity, Enter the Animal identifies conceptual and methodological approaches that have contributed to the prejudice against nonhuman animals. It offers a compelling theoretical base for the consideration of grief and spirituality across species and highlights important ethical implications for how humans treat other animals.
Download or read book LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
Download or read book Klasifikasi Citra Berbasis Deep Learning Menggunakan Scikit Learn Tensorflow Dan Keras Dengan Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-07-16 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Buku ini merupakan versi bahasa Indonesia dari buku kami yang berjudul “Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, and Tensorflow with Python GUI” yang dapat dilihat di Amazon maupun Google Books. Dalam buku ini, Anda akan mempelajari cara menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy, dan library lainnya untuk mengimplementasikan klasifikasi citra. Pada Bab 1, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy danb sejumlah pustaka lain untuk klasifikasi cuaca menggunakan dataset Multi-class Weather Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). Pada Bab 2, Anda akan menerapkan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mengenali jenis bunga menggunakan dataset Flowers Recognition dataset yang disediakan oleh Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 3, Anda akan menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi plat nomor kendaraan menggunakan dataset Car License Plate Detection yang disediakan oleh Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 4, Anda akan belajar bagaimana menggunakan TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk melakukan pengenalan bahasa isyarat menggunakan Sign Language Digits Dataset yang disediakan oleh Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). Anda juga akan membangun sebuah GUI untuk tujuan ini. Pada Bab 5, Anda akan belajar bagaimana menerapkan pustaka TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy dan sejumlah pustaka lain untuk mendeteksi keretakan permukaan beton menggunakan dataset Surface Crack Detection yang disediakan oleh Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). Anda juga akan membangun sebuah GUI untuk tujuan ini.
Download or read book The Practical Guides On Deep Learning Using SCIKIT LEARN KERAS and TENSORFLOW with Python GUI written by Rismon Hasiholan Sianipar and published by . This book was released on 2021-04-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 datasetIn Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram.In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose.In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose.In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https: //www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https: //www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose.In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https: //www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpo
Download or read book In Depth Tutorials Deep Learning Using Scikit Learn Keras and TensorFlow with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2021-06-05 with total page 1459 pages. Available in PDF, EPUB and Kindle. Book excerpt: BOOK 1: LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt. BOOK 2: THE PRACTICAL GUIDES ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. BOOK 3: STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. BOOK 4: Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). BOOK 5: Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). BOOK 6: Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).