EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Tuning Surface Properties Using Self assembled Monolayers for Various Applications

Download or read book Tuning Surface Properties Using Self assembled Monolayers for Various Applications written by Yekaterina Leonidovna Lyubarskaya and published by . This book was released on 2014 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The research presented in this dissertation focuses on the study of self-assembled monolayers (SAMs) in the modification of surface properties of different substrates for various applications. Self-assembled monolayers are organic molecules that can be deposited on a variety of surfaces, such as those of metals, metal-oxides, and semiconductors. Formation of SAMs on any inorganic material provides a ubiquitous way to impart desirable chemical and physical properties of organic and biological molecules to the inorganic substrate. It has been demonstrated that single molecules and their self-assembled monolayers can significantly alter the physical and electronic properties of inorganic conductors; moreover, studies have shown that the performance of many electrical devices can be transformed by modifying inorganic electrodes with organic SAMs. This is especially important for the development of next generation of ultra-compact electronic devices, in which the ability to control the interfacial charge-transport with a single monolayer of organic molecules would be ideal. We have developed different organic electronic architectures as test beds for studying the effect of monolayer properties, such as structural and geometrical parameters, on their electronic properties. By using a typical organic electronic device as a sensitive test platform, slight changes in a monolayer property, such as length, have been detected by studying the current- voltage characteristics (JV) of organic diodes functionalized with self-assembled monolayers (SAMs) of varying alkyl chain-length. Next, we describe the application of SAMs based on n-octylphosphonic acid (C8PA) and 1H,1H,2H,2H-perfluorooctanephosphonic acid (PFOPA) as anode buffer layers in C60-based organic photovoltaic (OPV) devices. We used the OPV platform to compare stabilities of organic monolayers exposed to ambient conditions with SAMs positioned inside working OPV devices. We found that the stabilities are different, suggesting the degradation mechanisms are distinct. The degradation of the OPV efficiency with respect to air exposure was significantly reduced with the perfluorinated PFOPA compared to the aliphatic C8PA. We attributed the OPV degradation to moisture diffusion from the top aluminum electrode and we discuss that the lowering of the anode work function is the result of hydrolysis of the SAM buffer layer. Next, we demonstrated the dependence of molecular electronic properties on the functional group substitution and that the changes in these properties can be measured using the organic light-emitting (OLED) platform. Specifically, we compared bilayered organic monomolecular systems immobilized on an inorganic electrode as the charge-injecting components of the organic light emitting diodes (OLEDs). Our bilayered interfaces comprise ordered inert primary and functional reactive layers, and they differ in only one parameter: the molecular structure of the terminal functional group. We demonstrate that we can visualize the differences in the charge transfer dynamics of two bilayered systems via patterned electroluminescence. In addition, we describe a new protocol for the preparation of shape-controlled multicomponent particles comprising metallic (Au and Ti), magnetic (Ni), and oxide (SiO2, TiO2) layers. First, we discuss the application and attractiveness of the colloidal structures, Janus Particles (JPs), that possess two different surfaces, varying either in polarity, hydrophilicity, etc. Next, we present our method for specifically controlling the composition, shape, and size of the micro-JPs. We demonstrate how this protocol permits fabrication of non-symmetrical particles by orthogonally functionalizing their opposite sides using well-established organosilanes and thiol chemistries (based on SAMs). We propose that these colloids may be used as convenient materials for studying non-symmetrical self-assembly at the meso- and micro-scales, due to their unique geometries and surface chemistries"--Pages viii-x.

Book Intermolecular Interactions and Surface Properties of Self Assembled Monolayers of Functional Boron Clusters

Download or read book Intermolecular Interactions and Surface Properties of Self Assembled Monolayers of Functional Boron Clusters written by Dominic Pascal Goronzy and published by . This book was released on 2019 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-assembled monolayers (SAMs) are an advantageous platform for probing the fundamental interactions that dictate the spontaneous formation of nanostructures and supramolecular assemblies and directly affect macroscale properties. As such, SAMs provide an avenue for creating surfaces with defined chemical and physical properties. The assembly of these nanoscale constructs is driven by three primary factors: the interface between the substrate and the monolayer, the interactions between the adsorbate molecules, and the interface between the monolayer and the environment. I studied an icosahedral cage boron cluster, the carborane, as a building block for SAMs with properties that we can tune to advantage. Carboranes have several favorable traits, including providing a scaffold for a variety of functional groups. A chalcogenide group, typically a thiol, is used for surface attachment; moreover, bifunctional carboranes also enable control of the valency during assembly and greater reactivity at the environmental interface of the SAM. Additionally, isomers of carboranethiol have distinct dipole moments in terms of orientation and magnitude. The dipoles can lead to the formation of long-range dipole dipole networks within the SAM, which can stabilize the SAM and also modify the surface properties of the material. The rigid, symmetric backbone of the carborane cage results in SAMs that are relatively pristine and defect free. Due to these advantageous traits, carboranes enable the creation of monolayers with tunable interactions at the SAM interfaces. This system not only enables myself and others to study the molecular forces of assembly but also facilitates the simultaneous modification of both chemical and physical properties of surfaces and interfaces. This thesis describes several carborane based surface assemblies and the variable interactions they have within the SAM interfaces. The introduction of a second thiol group to the carborane cage can be used to modulate the interaction of the SAM with the substrate. Carboranedithiol SAMs exhibit two binding modes, a monovalent state and a divalent state. The presence of these two modes enables tuning of valency using acid base chemistry and thus the ratio of singly bound to dual bound surface molecules can be modified during deposition. Another avenue to alter the interactions at the substrate-monolayer interface is to use an alternative functional group for surface attachment. A chalcogenide group similar to thiol is selenol, however carboraneselenolate SAMs have a distinct surface morphology compared to carboranethiolate SAMs. Carboraneselenolate SAMs exhibit a dynamic double lattice where surface molecules appear to switch between high- and low-conductance binding modes. This morphology is consistent with other cage molecule selenolate SAMs and is typically associated with substrate-mediated interactions. In contrast, the carboraneselenolate SAMs are resistant to thermal rearrangement and desorption due to the dipole dipole interactions within the monolayer. Carboranethiols can be modified by adding a carboxylic acid functional group that both alter the interactions within the monolayer and provide a platform for further reactions at the environmental interface. The introduction of a laterally positioned carboxyl functional group increases the steric demands of the molecule, thereby decreasing the packing density, but also enables hydrogen bonding interactions within the monolayer. The pKa of the surface bound carboxylic acid is shifted such that it is approximately two pH units less acidic than in solution. This shift is driven by the dielectric of the environment that the carboxyl group experiences on the surface, which is determined by the intermolecular interactions within the monolayer, partial desolvation, and the proximity to the substrate surface. The carboxyl group also remains available for further chemistry on the surface and can coordinate with a variety of metal ions or be used as an attachment point for performing chemical lift off lithography (CLL). This lithographic technique was performed successfully on several types of carboxyl carboranethiolate SAMs. The use of these SAMs also enabled the characterization of the post CLL substrate surface via scanning tunneling microscopy. This analysis revealed the molecules left behind during the CLL process are either in small molecular islands or sparsely packed, highly mobile molecules. There remain many opportunities for further chemistry to be performed with these carboxyl terminated SAMs or with carboranethiol SAMs with other additional functional groups. Carborane-based SAMs are a versatile system that provides a high degree of tunability at all three interfaces of a SAM. The work presented lays the foundation for further application in lithography, like CLL, as well as the use of these SAMs in organic electronics and devices and as interfacial materials.

Book Structure  Stability And Interfacial Studies Of Self Assembled Monolayers On Gold And Silver Surfaces

Download or read book Structure Stability And Interfacial Studies Of Self Assembled Monolayers On Gold And Silver Surfaces written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials play a vital role in almost all aspects of science and technology in the 21st century. The materials include nanoparticles, nanofilms, biological membranes etc. whose physicochemical properties are size-dependent. Thin films have wide range of applications in various branches of science. One of the efficient methods to form miniaturized structures for device applications is to fabricate nanostructured films on different substrates. Surfactant assembly on metallic and non-metallic surfaces based on self assembly and Langmuir-Blodgett technique offers a unique way to form thin films at molecular levels. The process of formation of unimolecular assemblies gives the flexibility of tuning the properties of underlying substrates for various applications including wetting characteristics, lubrication, passivation, mimicking biological phenomena etc. Towards this direction, self assembled monolayers (SAMs) of alkanethiols on gold and silver surfaces have been studied comprehensively for the past two decades. The reported literature on short chain length thiol-based monolayers is however, limited since the formation using conventional methods yield poor quality monolayers. The short chain length monolayers are useful in various applications like tribology, layer-by-layer assemblies, biosensors etc. Hence, it is essential to reproducibly form SAMs of various chain lengths and understand their properties. The present study is related to the formation of SAMs of alkanethiols and diselenides on gold and silver surfaces to form ordered and well-oriented monolayers. Monolayers of varying chain lengths (CH3(CH2)nSH where n = 3, 5, 7, 9, 11, 15) have been formed on gold and silver surfaces using different methods, (1) adsorption from neat thiols; (2) adsorption under electrochemical control and (3) adsorption from alcoholic solutions of the thiols. The characteristics features of the SAMs have been followed based on three different aspects, (i) structure and.

Book Hyperbranched Polymers

Download or read book Hyperbranched Polymers written by Deyue Yan and published by John Wiley & Sons. This book was released on 2011-05-04 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed overview of the state of the art of hyperbranched polymers The last two decades have seen a surge of interest in hyperbranched polymers due to their ease of synthesis on a large scale and their promising applications in diverse fields, from medicine to nanotechnology. Written by leading scientists in academia and industry, this book provides for the first time a comprehensive overview of the topic, bringing together in one complete volume a wealth of information previously available only in articles scattered across the literature. Drawing on their work at the cutting edge of this dynamic area of research, the authors cover everything readers need to know about hyperbranched polymers when designing highly functional materials. Clear, thorough discussions include: How irregular branching affects polymer properties and their potential applications Important theoretical basics, plus a useful summary of characterization techniques How hyperbranched polymers compare with dendrimers as well as linear polymers Future trends in the synthesis and application of hyperbranched polymers Geared to novices and experts alike, Hyperbranched Polymers is a must-have resource for anyone working in polymer architectures, polymer engineering, and functional materials. It is also useful for scientists in related fields who need a primer on the synthesis, theory, and applications of hyperbranched polymers.

Book Surface Functionalization and Applications of Self assembled Monolayers

Download or read book Surface Functionalization and Applications of Self assembled Monolayers written by Limin Wang and published by . This book was released on 2021* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-assembled monolayers, form a dense assembly of organic molecules on various solid substrates and have caught strong attention due to their large number of potential applications in sensors, biochips, anti-fouling surface, organic electronics, optical devices, etc.. Silane- and thiol-containing molecules represent two classes of the most extensively investigated SAMs. Silane-based monolayers show good stability in their physical and chemical properties which allow them to be further functionalized by different surface chemical reactions or electrochemical oxidation lithography, while the simple and reproducible preparation procedure of thiol-containing SAMs attached to Ag/Au substrates motivates their use, e.g., as analytes in SERS applications. In this thesis, three different potential applications for SAMs were investigated to introduce surface chemical reactions on silane-based SAMs, to utilize surface modification by electrochemical oxidation lithography on OTS monolayers, and finally to investigate the stability of SERS substrates when being immersed into different solvents and buffer solutions utilizing 4-ATP as probe molecules.

Book Thermal and Rheological Measurement Techniques for Nanomaterials Characterization

Download or read book Thermal and Rheological Measurement Techniques for Nanomaterials Characterization written by Sabu Thomas and published by Elsevier. This book was released on 2017-05-23 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Second Edition covers thermal and rheological measurement techniques, including their principle working methods, sample preparation and interpretation of results. This important reference is an ideal source for materials scientists and industrial engineers who are working with nanomaterials and need to know how to determine their properties and behaviors. Outlines key characterization techniques to determine the thermal and rheological behavior of different nanomaterials Explains how the thermal and rheological behavior of nanomaterials affect their usage Provides a method-orientated approach that explains how to successfully use each technique

Book Light Responsive Nanostructured Systems for Applications in Nanomedicine

Download or read book Light Responsive Nanostructured Systems for Applications in Nanomedicine written by Salvatore Sortino and published by Springer. This book was released on 2015-11-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.

Book Advances in Condensed Matter and Materials Physics

Download or read book Advances in Condensed Matter and Materials Physics written by Jagannathan Thirumalai and published by BoD – Books on Demand. This book was released on 2020-05-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Condensed Matter and Material Physics, incorporates the work of multiple authors to enhance the theoretical as well as experimental knowledge of materials. The investigation of crystalline solids is a growing need in the electronics industry. Micro and nano transistors require an in-depth understanding of semiconductors of different groups. Amorphous materials, on the other hand, as non-equilibrium materials are widely applied in sensors and other medical and industrial applications. Superconducting magnets, composite materials, lasers, and many more applications are integral parts of our daily lives. Superfluids, liquid crystals, and polymers are undergoing active research throughout the world. Hence profound information on the nature and application of various materials is in demand. This book bestows on the reader a deep knowledge of physics behind the concepts, perspectives, characteristic properties, and prospects. The book was constructed using 10 contributions from experts in diversified fields of condensed matter and material physics and its technology from over 15 research institutes across the globe.

Book Self Assembled Monolayers for Engineering of Structured Inorganic Materials in the Micrometer and Submicrometer Range

Download or read book Self Assembled Monolayers for Engineering of Structured Inorganic Materials in the Micrometer and Submicrometer Range written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Englisch: The present study displays new methods for the synthesis of structured inorganic materials with novel architecture in micrometer and nanometer range. The main role of the special design is based on template induced precipitation of inorganic materials on self - assembled monolayers. Suitable substrates are gold - coated glass slides and gold colloids, which show behavior like molecules, and at the same time they still display many properties of extended solids. On these substrates thiols can be adsorbed to form a monomolecular layer, which interferes with the physical properties of the obtained surface. The synthesis of special thiols, tuned for the special need in current applications, represents a main focus in the present study. Gold coated glass as templates were used in the first part of this work. The precipitation of calcium carbonate was examined due to the film thickness of the adsorbed monolayer. Aragonite, one of the three important calcium carbonate phases, is formed on self assembled monolayers under ambient conditions using a polyaromatic amide surface with film thickness in ranges of 5 - 400 nm as nucleation template. The parameters that could be controlled were the polaramide chain length, the?-substituent at the polymer, the connection to the gold surface using different amino thiols and the crystallization temperature. Here, the control of thickness of a polyaramide monolayer during its preparation using a step polymerization technique is presented the first time. By using self - assembled monolayers (SAM) of alkane thiols gold-coated glass slides have been patterned. Through the use of a special thiol terminated with a styrene monomer, microstructures of 5 to 10 æm width and 70 Å height have been formed on the surface by graft polymerization of styrene. These patterned gold slides have then been used to template the precipitation of thin titania films from ethanolic solutions of titanium isopropoxide to create microstructured architectu.

Book Tailoring Surfaces

Download or read book Tailoring Surfaces written by Nicholas D. Spencer and published by World Scientific. This book was released on 2011 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of the book is the modification of surfaces to tailor them for a specific purpose. Using this method of surface modification, materials chosen for their bulk properties (tensile strength, temperature stability, density, price can be optimized for any particular application, which can lead to improved hardness, biological inertness or activity, corrosion resistance, low or high friction or adhesion, water repellency or wettability, or catalytic activity. The works of the author — many of his crucial papers are included — touches upon these surface properties and spans fields including catalysis, analytical surface science, self-assembled monolayers, tribology, biomaterials, superhydrophobicity and polymer coatings.

Book Advances in Molecular Nanotechnology Research and Application  2012 Edition

Download or read book Advances in Molecular Nanotechnology Research and Application 2012 Edition written by and published by ScholarlyEditions. This book was released on 2012-12-26 with total page 1624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Molecular Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Molecular Nanotechnology. The editors have built Advances in Molecular Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Molecular Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Molecular Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Interface Controlled Organic Thin Films

Download or read book Interface Controlled Organic Thin Films written by Horst-Günter Rubahn and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic semiconductors are a central topic of advanced materials research. The book is aiming at bridging the gap between the development and production of devices and basic research on thin film characterisation using cutting-edge techniques in surface and interface science. Topics involve organic molecular-based sensors; interfaces in organic diodes and transistors; mobility in organic field effect transistors and space charge problems; integration of optoelectronic nanostructures; nonlinear optical properties of organic nanostructures; the wetting layer problem; how to get from functionalized molecules to nanoaggregates; optical, electrical and mechanical properties of organic nanofibers as well; as near field investigations of organic thin films.

Book Biomaterials Science

    Book Details:
  • Author : William R Wagner
  • Publisher : Academic Press
  • Release : 2020-05-23
  • ISBN : 0128161388
  • Pages : 1612 pages

Download or read book Biomaterials Science written by William R Wagner and published by Academic Press. This book was released on 2020-05-23 with total page 1612 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials’ community. The most comprehensive coverage of principles and applications of all classes of biomaterials Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. Online chapter exercises available for most chapters

Book Nanotechnology and Functional Materials for Engineers

Download or read book Nanotechnology and Functional Materials for Engineers written by Yaser Dahman and published by Elsevier. This book was released on 2017-01-13 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanopolymers, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical. Offers in-depth information on a variety of nanomaterials and how they are used for different engineering applications Provides an overview of current research and suggests how this will impact future applications Explores how the unique properties of different nanomaterials make them particularly suitable for specific applications

Book Emerging Environmental Technologies

Download or read book Emerging Environmental Technologies written by Vishal Shah and published by Springer Science & Business Media. This book was released on 2008-07-30 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this day and age, it is unfortunate that the economic prosperity and development leads to disruption of the dynamic balance of the environment. The philosophy of sustainable development has been presented for a long period of time but it has not been able to bring about a substantial change in our society. The transformation of this philosophy into a practical reality seems to be far away – at least in the foreseeable future. In my opinion, the only way I see the revolution taking place is for us to incorporate ‘sustainability’ in our daily living and to keep pushing for a sustainable society. Meanwhile, we also need scientists to work on technologies that would lead us to that goal at a faster pace. Technologies that are ‘completely’ environmentally friendly are needed urgently. And if such technologies or ideas of one exists, a platform is required that showcases such ideas to the scientific and non-scientific audience. Through this book, I am happy to present the thoughts of seven different research groups whose work may lead us to the doorsteps of sustainable society. As scientists, most of us specialize in a sub-topic that may be related to one of the three environmental components – air, land, or water. Over a period of time, we become so engrossed with the sub-discipline of our specialization that we only have glimpses of what is happening in other disciplines.

Book Supramolecular Polymers

    Book Details:
  • Author : Alberto Ciferri
  • Publisher : CRC Press
  • Release : 2005-04-26
  • ISBN : 1420027921
  • Pages : 778 pages

Download or read book Supramolecular Polymers written by Alberto Ciferri and published by CRC Press. This book was released on 2005-04-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supramolecular Polymers, Second Edition details assembly processes and structure-function correlation in natural and synthetic self-assembling materials, focusing on developments occurred over the past five years. The book highlights developments in the synthesis of complex structures, chemical design principles, and theoretical models of

Book Comprehensive Nanoscience and Technology

Download or read book Comprehensive Nanoscience and Technology written by and published by Academic Press. This book was released on 2010-10-29 with total page 2785 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.