Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Download or read book GeNeDis 2022 written by Panagiotis Vlamos and published by Springer Nature. This book was released on 2023-07-24 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 5th World Congress on Genetics, Geriatrics and Neurodegenerative Diseases Research (GeNeDis 2022) focuses on the latest major challenges in scientific research, new drug targets, the development of novel biomarkers, new imaging techniques, novel protocols for early diagnosis of neurodegenerative diseases, and several other scientific advances, with the aim of better, safer, and healthier aging. Computational methodologies for implementation on the discovery of biomarkers for neurodegenerative diseases are extensively discussed. This volume focuses on the sessions from the conference regarding computational biology and bioinformatics.
Download or read book Statistical Hypothesis Testing in Context Volume 52 written by Michael P. Fay and published by Cambridge University Press. This book was released on 2022-05-05 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fay and Brittain present statistical hypothesis testing and compatible confidence intervals, focusing on application and proper interpretation. The emphasis is on equipping applied statisticians with enough tools - and advice on choosing among them - to find reasonable methods for almost any problem and enough theory to tackle new problems by modifying existing methods. After covering the basic mathematical theory and scientific principles, tests and confidence intervals are developed for specific types of data. Essential methods for applications are covered, such as general procedures for creating tests (e.g., likelihood ratio, bootstrap, permutation, testing from models), adjustments for multiple testing, clustering, stratification, causality, censoring, missing data, group sequential tests, and non-inferiority tests. New methods developed by the authors are included throughout, such as melded confidence intervals for comparing two samples and confidence intervals associated with Wilcoxon-Mann-Whitney tests and Kaplan-Meier estimates. Examples, exercises, and the R package asht support practical use.
Download or read book Advances in Multimedia Information Processing PCM 2010 Part II written by Guoping Qiu and published by Springer Science & Business Media. This book was released on 2010-09-03 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2010 Pacific-Rim Conference on Multimedia (PCM 2010) was held in Shanghai at Fudan University, during September 21–24, 2010. Since its inauguration in 2000, PCM has been held in various places around the Pacific Rim, namely Sydney (PCM 2000), Beijing (PCM 2001), Hsinchu (PCM 2002), Singapore (PCM 2003), Tokyo (PCM 2004), Jeju (PCM 2005), Zhejiang (PCM 2006), Hong Kong (PCM 2007), Tainan (PCM 2008), and Bangkok (PCM 2009). PCM is a major annual international conference organized as a forum for the dissemination of state-of-the-art technological advances and research results in the fields of theoretical, experimental, and applied multimedia analysis and processing. PCM 2010 featured a comprehensive technical program which included 75 oral and 56 poster presentations selected from 261 submissions from Australia, Canada, China, France, Germany, Hong Kong, India, Iran, Italy, Japan, Korea, Myanmar, Norway, Singapore, Taiwan, Thailand, the UK, and the USA. Three distinguished researchers, Prof. Zhi-Hua Zhou from Nanjing University, Dr. Yong Rui from Microsoft, and Dr. Tie-Yan Liu from Microsoft Research Asia delivered three keynote talks to the conference. We are very grateful to the many people who helped to make this conference a s- cess. We would like to especially thank Hong Lu for local organization, Qi Zhang for handling the publication of the proceedings, and Cheng Jin for looking after the c- ference website and publicity. We thank Fei Wu for organizing the special session on large-scale multimedia search in the social network settings.
Download or read book Encyclopedia of Statistical Sciences written by Samuel Kotz and published by . This book was released on 1982 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Download or read book Post Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data written by Syed Ejaz Ahmed and published by CRC Press. This book was released on 2023-05-25 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some post-estimation and predictions strategies for the host of useful statistical models with applications in data science. It combines statistical learning and machine learning techniques in a unique and optimal way. It is well-known that machine learning methods are subject to many issues relating to bias, and consequently the mean squared error and prediction error may explode. For this reason, we suggest shrinkage strategies to control the bias by combining a submodel selected by a penalized method with a model with many features. Further, the suggested shrinkage methodology can be successfully implemented for high dimensional data analysis. Many researchers in statistics and medical sciences work with big data. They need to analyse this data through statistical modelling. Estimating the model parameters accurately is an important part of the data analysis. This book may be a repository for developing improve estimation strategies for statisticians. This book will help researchers and practitioners for their teaching and advanced research, and is an excellent textbook for advanced undergraduate and graduate courses involving shrinkage, statistical, and machine learning. The book succinctly reveals the bias inherited in machine learning method and successfully provides tools, tricks and tips to deal with the bias issue. Expertly sheds light on the fundamental reasoning for model selection and post estimation using shrinkage and related strategies. This presentation is fundamental, because shrinkage and other methods appropriate for model selection and estimation problems and there is a growing interest in this area to fill the gap between competitive strategies. Application of these strategies to real life data set from many walks of life. Analytical results are fully corroborated by numerical work and numerous worked examples are included in each chapter with numerous graphs for data visualization. The presentation and style of the book clearly makes it accessible to a broad audience. It offers rich, concise expositions of each strategy and clearly describes how to use each estimation strategy for the problem at hand. This book emphasizes that statistics/statisticians can play a dominant role in solving Big Data problems, and will put them on the precipice of scientific discovery. The book contributes novel methodologies for HDDA and will open a door for continued research in this hot area. The practical impact of the proposed work stems from wide applications. The developed computational packages will aid in analyzing a broad range of applications in many walks of life.
Download or read book Recent Advances and Trends in Nonparametric Statistics written by M.G. Akritas and published by Elsevier. This book was released on 2003-10-31 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Download or read book Perspectives on Big Data Analysis written by S. Ejaz Ahmed and published by American Mathematical Society. This book was released on 2014-08-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Workshop on Perspectives on High-dimensional Data Analysis II, held May 30-June 1, 2012, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. This book collates applications and methodological developments in high-dimensional statistics dealing with interesting and challenging problems concerning the analysis of complex, high-dimensional data with a focus on model selection and data reduction. The chapters contained in this book deal with submodel selection and parameter estimation for an array of interesting models. The book also presents some surprising results on high-dimensional data analysis, especially when signals cannot be effectively separated from the noise, it provides a critical assessment of penalty estimation when the model may not be sparse, and it suggests alternative estimation strategies. Readers can apply the suggested methodologies to a host of applications and also can extend these methodologies in a variety of directions. This volume conveys some of the surprises, puzzles and success stories in big data analysis and related fields. This book is co-published with the Centre de Recherches Mathématiques.
Download or read book Artificial Intelligence In Radiation Oncology written by Seong K Mun and published by World Scientific. This book was released on 2022-12-27 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology.
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Download or read book Mathematical and Statistical Methods for Actuarial Sciences and Finance written by Cira Perna and published by Springer Science & Business Media. This book was released on 2012-03-08 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book develops the capabilities arising from the cooperation between mathematicians and statisticians working in insurance and finance fields. It gathers some of the papers presented at the conference MAF2010, held in Ravello (Amalfi coast), and successively, after a reviewing process, worked out to this aim.
Download or read book Quantitative Methods in Pharmaceutical Research and Development written by Olga V. Marchenko and published by Springer Nature. This book was released on 2020-09-24 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume presents an overview of concepts, methods, and applications used in several quantitative areas of drug research, development, and marketing. Chapters bring together the theories and applications of various disciplines, allowing readers to learn more about quantitative fields, and to better recognize the differences between them. Because it provides a thorough overview, this will serve as a self-contained resource for readers interested in the pharmaceutical industry, and the quantitative methods that serve as its foundation. Specific disciplines covered include: Biostatistics Pharmacometrics Genomics Bioinformatics Pharmacoepidemiology Commercial analytics Operational analytics Quantitative Methods in Pharmaceutical Research and Development is ideal for undergraduate students interested in learning about real-world applications of quantitative methods, and the potential career options open to them. It will also be of interest to experts working in these areas.
Download or read book Hands On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Download or read book Data Science Projects with Python written by Stephen Klosterman and published by Packt Publishing Ltd. This book was released on 2021-07-29 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.