EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book PEM Fuel Cells

Download or read book PEM Fuel Cells written by Yun Wang and published by Momentum Press. This book was released on 2013-04-06 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.

Book Transfer of Mass and Heat in Polymer Electrolyte Membrane Fuel Cell Cathode

Download or read book Transfer of Mass and Heat in Polymer Electrolyte Membrane Fuel Cell Cathode written by Nada Zamel and published by . This book was released on 2007 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for alternative sources of energy with low to zero emissions has led to the development of polymer electrolyte membrane fuel cells. PEM fuel cells are electro-chemical devices that convert chemical energy to electricity by using hydrogen as the fuel and oxygen as the oxidant with water as the byproduct of this reaction. One of the major barriers to the commercialization of these cells is the losses that occur at the cathode due to the slow oxygen diffusion and sluggish electrochemical reaction, which are further amplified by the presence of liquid water. Numerous numerical and mathematical models are found in the literature, which investigate the transport phenomena in the cathode and their effects on the cell performance. In this thesis, the discussion of a two-dimensional, steady state, half cell model is put forward. The conservation equations for mass, momentum, species charge and energy are solved using the commercial software COMSOL Multiphysics. The conservation equations are applied to the cathode bipolar plate, gas diffusion layer and catalyst layer. The flow of gaseous species are assumed to be uniform in the channel. The catalyst layer is assumed to be composed of a uniform distribution of catalyst, liquid water, electrolyte, and void space. The Stefan-Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Due to the low relative species' velocity, the Darcy law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is used to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. A sensitivity analysis is carried out to investigate the effects of pressure drop in the channel, permeability, inlet relative humidity and shoulder/channel ratio on the performance of the cell. Electron transport is shown to play an important role in determining the overall performance of the cathode. With a serpentine flow field, the oxygen consumption occurs more aggressively at the areas under the land since electrons are readily available at these areas. In addition, the reaction increases along the catalyst layer thickness and occurs more rapidly at the catalyst layer/membrane interface. The losses due to electron transport are much higher than those due to the proton transport. The sensitivity analysis put forward illustrated that with the increase of pressure drop along the channel flow field, the performance of the cell and liquid water removal are enhanced. Similarly, an increase in permeability of the porous material results in an increase in liquid water removal and cell performance. Further, the investigation of the inlet relative humidity effects revealed that the electrolyte conductivity has a significant effect on the performance up to a point. On a similar fashion, a decrease in shoulder/channel width ratio leads to an increase in performance and an increase in the leakage between neighboring channels. Finally, the addition of heat is shown to have a negative effect on the cell performance. Some recommendations can be drawn from the results of this thesis. It is recommended to develop a model to study the flow in the channel flow field in order to investigate the effects of the channel flow on the transport of species in the cell. Further, the geometry of the channel should be studied. Finally, the production of water should be analyzed. The analysis should be extended to investigate its production in vapor form only and its production as a mixture of vapor and liquid.

Book Transfer of Mass and Heat in the Cathode of Polymer Electrolyte Membrane Fuel Cell

Download or read book Transfer of Mass and Heat in the Cathode of Polymer Electrolyte Membrane Fuel Cell written by Nada Zamel and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fuel Cells

    Book Details:
  • Author : Shripad T. Revankar
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1482235412
  • Pages : 714 pages

Download or read book Fuel Cells written by Shripad T. Revankar and published by CRC Press. This book was released on 2016-04-19 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cells: Principles, Design, and Analysis considers the latest advances in fuel cell system development and deployment, and was written with engineering and science students in mind. This book provides readers with the fundamentals of fuel cell operation and design, and incorporates techniques and methods designed to analyze different fuel cell

Book Transport Phenomena in Fuel Cells

Download or read book Transport Phenomena in Fuel Cells written by Bengt Sundén and published by WIT Press. This book was released on 2005 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are expected to play a significant role in the next generation of energy systems and road vehicles for transportation. However, substantial progress is required in reducing manufacturing costs and improving performance. This book aims to contribute to the understanding of the transport processes in solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC), which are of current interest. A wide range of topics is covered, featuring contributions from prominent scientists and engineers in the field. A detailed summary of state-of-the-art knowledge and future needs, this text will be of value to graduate students and researchers working on the development of fuel cells within academia and industry.

Book Introduction to Transfer Phenomena in PEM Fuel Cells

Download or read book Introduction to Transfer Phenomena in PEM Fuel Cells written by Bilal Abderezzak and published by Elsevier. This book was released on 2018-11-13 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Transfer Phenomena in PEM Fuel Cells presents the fruit of several years of research in the area of fuel cells. The book illustrates the transfer phenomena occurring inside a single cell and describes the technology field of hydrogen, explicitly the production, storage and risk management of hydrogen as an energy carrier. Several applications of hydrogen are also cited, and special interest is dedicated to the PEM Fuel Cell. Mass, charge and heat transfer phenomena are also discussed in this great resource that includes explanations, illustrations and governing equations for each section. Illustrates transfer phenomena occurring within a single cell Describes the technological field of hydrogen (production, storage, and risk and management) Introduces the various applications of hydrogen Presents mass transfer, charge and heat phenomena

Book High Temperature Polymer Electrolyte Membrane Fuel Cells

Download or read book High Temperature Polymer Electrolyte Membrane Fuel Cells written by Qingfeng Li and published by Springer. This book was released on 2015-10-15 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.

Book Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Download or read book Water and Thermal Management of Proton Exchange Membrane Fuel Cells written by Kui Jiao and published by Elsevier. This book was released on 2021-06-05 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells

Book Proton Exchange Membrane Fuel Cells

Download or read book Proton Exchange Membrane Fuel Cells written by Alhussein Albarbar and published by Springer. This book was released on 2017-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.

Book PEM Fuel Cell Modeling and Simulation Using Matlab

Download or read book PEM Fuel Cell Modeling and Simulation Using Matlab written by Colleen Spiegel and published by Elsevier. This book was released on 2011-08-29 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money. Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics. *Modeling and design validation techniques *Covers most types of Fuel Cell including SOFC *MATLAB and FEMLAB modelling codes *Translates basic phenomena into mathematical equations

Book High temperature polymer electrolyte membrane fuel cells

Download or read book High temperature polymer electrolyte membrane fuel cells written by Christian Siegel and published by Logos Verlag Berlin GmbH. This book was released on 2015-03-20 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: A three-dimensional computational fluid dynamics model of a high temperature polymer electrolyte membrane fuel cell, employing a high temperature stable polybenzimidazole membrane electrode assembly doped with phosphoric acid, was developed and implemented using a commercially available finite element software. Three types of flow-fields were modeled and simulated. Selected simulation results at reference operating conditions were compared to the performance curves and to segmented solid-phase temperature and current density measurements. For the segmented measurements, an inhouse developed prototype cell was designed and manufactured. The segmented cell was successfully operated and the solid-phase temperature and the current density distribution were recorded, evaluated, and discussed. Sequentially scanned segmented electrochemical impedance spectroscopy measurements were performed to qualitatively support the observed trends. These measurements were used to identify and determine the causes of the inhomogeneous current density distributions. An equivalent circuit model was developed, the obtained spectra were analyzed, and the model parameters discussed. This work helps to provide a better understanding of the internal behaviour of a running high temperature polymer electrolyte membrane fuel cell and presents valuable data for modeling and simulation. For large fuel cells and complete fuel cell stacks in particular, well designed anode and cathode inlet and outlet sections are expected to aid in achieving flatter quantities distributions and in preventing hot spots over the membrane electrode assembly area, and to develop proper start-up, shut-down, and tempering concepts.

Book Polymer Electrolyte Fuel Cells

Download or read book Polymer Electrolyte Fuel Cells written by Alejandro A. Franco and published by CRC Press. This book was released on 2016-04-19 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related

Book Lumped Finite Element Model Analysis of Pem Fuel Cell

Download or read book Lumped Finite Element Model Analysis of Pem Fuel Cell written by Vijit Mathur and published by LAP Lambert Academic Publishing. This book was released on 2012-03 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cell is an emerging area in the field of renewable alternate energy sources. The operation of a fuel cell involves fluid flow, heat transfer, mass transfer processes and the electrochemical reaction. All the above processes are coupled and they take place in a small region of space making the system complex. The performance of a fuel cell can be studied by experiments and numerical modeling. In the present project, an attempt is made to mathematically model the performance of a Polymer Electrolyte Membrane (PEM) fuel cell using lumped and control volume approach. The various processes that take place inside the gas diffusion layer of anode and cathode, catalyst and membrane of the fuel cell are represented using governing equations based on the mass and energy conservation principles and electrochemical reactions. The equation that is used to represent the diffusion phenomena in the GDL is solved using the Finite Difference Method. The present model is capable of predicting the performance of the PEM fuel cell in close agreement with numerical model based on CFD approach with a maximum of 30% error.

Book Hydrogen Based Energy Conversion

Download or read book Hydrogen Based Energy Conversion written by Jin-Soo Park and published by MDPI. This book was released on 2021-04-28 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of the nine sections: i) the first three sections are related to polymeric electrolyte composites; ii) the next two sections relate to gas diffusion layers (GDLs); iii) the next two sections relate to membrane¬–electrode assembly (MEA); iv) and the final two sections deal with the numerical simulation of flow fields for polymer electrolyte fuel cells (PEFCs). All sections describe recent results of the study of the main components of PEFC stacks. The studies provide the underlying material, electrochemical, and/or mechanical aspects that enhance the mass transport of gas, ions (liquid), and electrons for a better performance of PEFCs and the electrochemical reactions at the triple-phase boundary in electrodes. Each study offers the fundamentals, a comprehensive background, and cutting-edge technology on the aforementioned materials and mass transport phenomena.

Book Mathematical Modeling of Proton Exchange Membrane Fuel Cells

Download or read book Mathematical Modeling of Proton Exchange Membrane Fuel Cells written by Andrew Michael Rowe and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good understanding of the various mass and heat transport, and electrochemical re-action processes is required for design strategies that lead to increased performance of proton exchange membrane (PEM) fuel cells. Traditionally, attempts at understand?ing how these processes interact has been through mathematical modeling where efforts have focussed on understanding the cathode. The interaction between mass transport, membrane hydration and the effects of heat generation and transfer com?plicates our understanding of relevant processes, hampering the effort to improve fuel cell performance. To further our basic understanding of how the power density of a PEM fuel cell can be increased, and, thereby, decrease the cost of a complete fuel cell system, a comprehensive performance model of a PEM fuel cell has been formulated and investigated. This model explicitly examines the anode as well as the cathode, and includes the effects of energy transfer as temperature control is critical to PEM cells. The results of this model suggest that humidification of the cathode gas stream may be reduced at high operating currents, the temperature peak across a single cell increases as operating temperature decreases, and the gas backing has a significant effect on mass transport at typical operating potentials, especially with air operation.

Book Proton Exchange Membrane Fuel Cells

Download or read book Proton Exchange Membrane Fuel Cells written by David P. Wilkinson and published by CRC Press. This book was released on 2009-11-24 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Detailed, Up-to-Date Treatment of Key Developments in PEMFC MaterialsThe potential to revolutionize the way we power our worldBecause of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance o

Book Heat and Mass Transfer

    Book Details:
  • Author : Md Monwar Hossain
  • Publisher : BoD – Books on Demand
  • Release : 2011-09-22
  • ISBN : 9533076046
  • Pages : 230 pages

Download or read book Heat and Mass Transfer written by Md Monwar Hossain and published by BoD – Books on Demand. This book was released on 2011-09-22 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a number of topics in heat and mass transfer processes for a variety of industrial applications. The research papers provide advances in knowledge and design guidelines in terms of theory, mathematical modeling and experimental findings in multiple research areas relevant to many industrial processes and related equipment design. The design of equipment includes air heaters, cooling towers, chemical system vaporization, high temperature polymerization and hydrogen production by steam reforming. Nine chapters of the book will serve as an important reference for scientists and academics working in the research areas mentioned above, especially in the aspects of heat and mass transfer, analytical/numerical solutions and optimization of the processes.