Download or read book Torsors and Rational Points written by Alexei Skorobogatov and published by Cambridge University Press. This book was released on 2001-07-05 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2001, is a complete and coherent exposition of the theory and applications of torsors to rational points.
Download or read book Torsors tale Homotopy and Applications to Rational Points written by Alexei Skorobogatov and published by Cambridge University Press. This book was released on 2013-04-18 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture notes and research articles on the use of torsors and étale homotopy in algebraic and arithmetic geometry.
Download or read book Rational Points on Varieties written by Bjorn Poonen and published by American Mathematical Soc.. This book was released on 2017-12-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Download or read book Torsors tale Homotopy and Applications to Rational Points written by Alexei N. Skorobogatov and published by Cambridge University Press. This book was released on 2013-04-18 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Torsors, also known as principal bundles or principal homogeneous spaces, are ubiquitous in mathematics. The purpose of this book is to present expository lecture notes and cutting-edge research papers on the theory and applications of torsors and étale homotopy, all written from different perspectives by leading experts. Part one of the book contains lecture notes on recent uses of torsors in geometric invariant theory and representation theory, plus an introduction to the étale homotopy theory of Artin and Mazur. Part two of the book features a milestone paper on the étale homotopy approach to the arithmetic of rational points. Furthermore, the reader will find a collection of research articles on algebraic groups and homogeneous spaces, rational and K3 surfaces, geometric invariant theory, rational points, descent and the Brauer–Manin obstruction. Together, these give a state-of-the-art view of a broad area at the crossroads of number theory and algebraic geometry.
Download or read book Rational Points and Arithmetic of Fundamental Groups written by Jakob Stix and published by Springer. This book was released on 2012-10-19 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.
Download or read book Arithmetic Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2009 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.
Download or read book Brauer Groups Tamagawa Measures and Rational Points on Algebraic Varieties written by Jorg Jahnel and published by American Mathematical Soc.. This book was released on 2014-12-02 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this book is the study of rational points on algebraic varieties of Fano and intermediate type--both in terms of when such points exist and, if they do, their quantitative density. The book consists of three parts. In the first part, the author discusses the concept of a height and formulates Manin's conjecture on the asymptotics of rational points on Fano varieties. The second part introduces the various versions of the Brauer group. The author explains why a Brauer class may serve as an obstruction to weak approximation or even to the Hasse principle. This part includes two sections devoted to explicit computations of the Brauer-Manin obstruction for particular types of cubic surfaces. The final part describes numerical experiments related to the Manin conjecture that were carried out by the author together with Andreas-Stephan Elsenhans. The book presents the state of the art in computational arithmetic geometry for higher-dimensional algebraic varieties and will be a valuable reference for researchers and graduate students interested in that area.
Download or read book Equidistribution in Number Theory An Introduction written by Andrew Granville and published by Springer Science & Business Media. This book was released on 2007-04-08 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos. The volume brings together leading researchers from a range of fields who reveal fascinating links between seemingly disparate areas.
Download or read book Rational Points on Varieties written by Bjorn Poonen and published by American Mathematical Society. This book was released on 2023-08-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University
Download or read book Cox Rings written by Ivan Arzhantsev and published by Cambridge University Press. This book was released on 2015 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a largely self-contained introduction to Cox rings and their applications in algebraic and arithmetic geometry.
Download or read book Assouad Dimension and Fractal Geometry written by Jonathan M. Fraser and published by Cambridge University Press. This book was released on 2020-10-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first thorough treatment of the Assouad dimension in fractal geometry, with applications to many fields within pure mathematics.
Download or read book Quantitative Arithmetic of Projective Varieties written by Timothy D. Browning and published by Springer Science & Business Media. This book was released on 2009-12-21 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the range of available tools from analytic number theory that can be applied to study the density of rational points on projective varieties.
Download or read book Algebraic Number Theory and Diophantine Analysis written by F. Halter-Koch and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Download or read book Abelian Varieties Theta Functions and the Fourier Transform written by Alexander Polishchuk and published by Cambridge University Press. This book was released on 2003-04-21 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Download or read book Algebraic Geometry Salt Lake City 2015 written by Richard Thomas and published by American Mathematical Soc.. This book was released on 2018-06-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Download or read book Arithmetic and Geometry Around Galois Theory written by Pierre Dèbes and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on étale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.
Download or read book Arithmetic of Higher Dimensional Algebraic Varieties written by Bjorn Poonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.