EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topological Vector Spaces  Distributions and Kernels

Download or read book Topological Vector Spaces Distributions and Kernels written by François Treves and published by Elsevier. This book was released on 2016-06-03 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological Vector Spaces, Distributions and Kernels discusses partial differential equations involving spaces of functions and space distributions. The book reviews the definitions of a vector space, of a topological space, and of the completion of a topological vector space. The text gives examples of Frechet spaces, Normable spaces, Banach spaces, or Hilbert spaces. The theory of Hilbert space is similar to finite dimensional Euclidean spaces in which they are complete and carry an inner product that can determine their properties. The text also explains the Hahn-Banach theorem, as well as the applications of the Banach-Steinhaus theorem and the Hilbert spaces. The book discusses topologies compatible with a duality, the theorem of Mackey, and reflexivity. The text describes nuclear spaces, the Kernels theorem and the nuclear operators in Hilbert spaces. Kernels and topological tensor products theory can be applied to linear partial differential equations where kernels, in this connection, as inverses (or as approximations of inverses), of differential operators. The book is suitable for vector mathematicians, for students in advanced mathematics and physics.

Book A Course on Topological Vector Spaces

Download or read book A Course on Topological Vector Spaces written by Jürgen Voigt and published by Springer Nature. This book was released on 2020-03-06 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(Ω) and the space of distributions, and the Krein-Milman theorem. The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians.

Book Topological Vector Spaces

Download or read book Topological Vector Spaces written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a softcover reprint of the 1987 English translation of the second edition of Bourbaki's Espaces Vectoriels Topologiques. Much of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, reflecting decades of progress in the field.

Book Topological Vector Spaces

Download or read book Topological Vector Spaces written by Lawrence Narici and published by CRC Press. This book was released on 2010-07-26 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: With many new concrete examples and historical notes, Topological Vector Spaces, Second Edition provides one of the most thorough and up-to-date treatments of the Hahn-Banach theorem. This edition explores the theorem's connection with the axiom of choice, discusses the uniqueness of Hahn-Banach extensions, and includes an entirely new chapter on v

Book Modern Methods in Topological Vector Spaces

Download or read book Modern Methods in Topological Vector Spaces written by Albert Wilansky and published by Courier Corporation. This book was released on 2013-01-01 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Designed for a one-year course in topological vector spaces, this text is geared toward beginning graduate students of mathematics. Topics include Banach space, open mapping and closed graph theorems, local convexity, duality, equicontinuity, operators,inductive limits, and compactness and barrelled spaces. Extensive tables cover theorems and counterexamples. Rich problem sections throughout the book. 1978 edition"--

Book Topological Vector Spaces and Distributions

Download or read book Topological Vector Spaces and Distributions written by John Horvath and published by Courier Corporation. This book was released on 2013-10-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise exposition provides an excellent summary of the modern theory of locally convex spaces and develops the theory of distributions in terms of convolutions, tensor products, and Fourier transforms. 1966 edition.

Book Topological Vector Spaces and Their Applications

Download or read book Topological Vector Spaces and Their Applications written by V.I. Bogachev and published by Springer. This book was released on 2017-05-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

Book Topological Vector Spaces I

Download or read book Topological Vector Spaces I written by Gottfried Köthe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the author's aim to give a systematic account of the most im portant ideas, methods and results of the theory of topological vector spaces. After a rapid development during the last 15 years, this theory has now achieved a form which makes such an account seem both possible and desirable. This present first volume begins with the fundamental ideas of general topology. These are of crucial importance for the theory that follows, and so it seems necessary to give a concise account, giving complete proofs. This also has the advantage that the only preliminary knowledge required for reading this book is of classical analysis and set theory. In the second chapter, infinite dimensional linear algebra is considered in comparative detail. As a result, the concept of dual pair and linear topologies on vector spaces over arbitrary fields are intro duced in a natural way. It appears to the author to be of interest to follow the theory of these linearly topologised spaces quite far, since this theory can be developed in a way which closely resembles the theory of locally convex spaces. It should however be stressed that this part of chapter two is not needed for the comprehension of the later chapters. Chapter three is concerned with real and complex topological vector spaces. The classical results of Banach's theory are given here, as are fundamental results about convex sets in infinite dimensional spaces.

Book Counterexamples in Topological Vector Spaces

Download or read book Counterexamples in Topological Vector Spaces written by S.M. Khaleelulla and published by Springer. This book was released on 2006-11-17 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Linear Topological Spaces

    Book Details:
  • Author : John L Kelley
  • Publisher : Hassell Street Press
  • Release : 2021-09-09
  • ISBN : 9781014254030
  • Pages : 280 pages

Download or read book Linear Topological Spaces written by John L Kelley and published by Hassell Street Press. This book was released on 2021-09-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book Locally Convex Spaces

Download or read book Locally Convex Spaces written by and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book grew out of several courses which I have taught at the University of Zürich and at the University of Maryland during the past seven years. It is primarily intended to be a systematic text on locally convex spaces at the level of a student who has some familiarity with general topology and basic measure theory. However, since much of the material is of fairly recent origin and partly appears here for the first time in a book, and also since some well-known material has been given a not so well-known treatment, I hope that this book might prove useful even to more advanced readers. And in addition I hope that the selection ofmaterial marks a sufficient set-offfrom the treatments in e.g. N. Bourbaki [4], [5], R.E. Edwards [1], K. Floret-J. Wloka [1], H.G. Garnir-M. De Wilde-J. Schmets [1], AGrothendieck [13], H. Heuser [1], J. Horvath [1], J.L. Kelley-I. Namioka et al. [1], G. Köthe [7], [10], A P. Robertson W. Robertson [1], W. Rudin [2], H.H. Schaefer [1], F. Treves [l], A Wilansky [1]. A few sentences should be said about the organization of the book. It consists of 21 chapters which are grouped into three parts. Each chapter splits into several sections. Chapters, sections, and the statements therein are enumerated in consecutive fashion.

Book An Advanced Complex Analysis Problem Book

Download or read book An Advanced Complex Analysis Problem Book written by Daniel Alpay and published by Birkhäuser. This book was released on 2015-11-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

Book Henstock Kurzweil Integration

Download or read book Henstock Kurzweil Integration written by Jaroslav Kurzweil and published by World Scientific. This book was released on 2000 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: "the results of the book are very interesting and profound and can be read successfully without preliminary knowledge. It is written with a great didactical mastery, clearly and precisely It can be recommended not only for specialists on integration theory, but also for a large scale of readers, mainly for postgraduate students".Mathematics Abstracts

Book Topological Vector Spaces

Download or read book Topological Vector Spaces written by Alexandre Grothendieck and published by Gordon & Breach Publishers. This book was released on 1973-01-01 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Calculus on Normed Vector Spaces

Download or read book Calculus on Normed Vector Spaces written by Rodney Coleman and published by Springer Science & Business Media. This book was released on 2012-07-25 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to calculus on normed vector spaces at a higher undergraduate or beginning graduate level. The prerequisites include basic calculus and linear algebra, as well as a certain mathematical maturity. All the important topology and functional analysis topics are introduced where necessary. In its attempt to show how calculus on normed vector spaces extends the basic calculus of functions of several variables, this book is one of the few textbooks to bridge the gap between the available elementary texts and high level texts. The inclusion of many non-trivial applications of the theory and interesting exercises provides motivation for the reader.

Book Free Topological Vector Spaces

Download or read book Free Topological Vector Spaces written by Joe Flood and published by . This book was released on 1984 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tools for Infinite Dimensional Analysis

Download or read book Tools for Infinite Dimensional Analysis written by Jeremy J. Becnel and published by CRC Press. This book was released on 2020-12-21 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Itô calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results