Download or read book Topological Data Analysis with Applications written by Gunnar Carlsson and published by Cambridge University Press. This book was released on 2021-12-16 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely text introduces topological data analysis from scratch, with detailed case studies.
Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Download or read book Topological Methods in Data Analysis and Visualization written by Valerio Pascucci and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology-based methods are of increasing importance in the analysis and visualization of datasets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation of large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. . The editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. This book contains the best 20 peer-reviewed papers resulting from the discussions and presentations at the third workshop on "Topological Methods in Data Analysis and Visualization", held 2009 in Snowbird, Utah, US. The 2009 "TopoInVis" workshop follows the two successful workshops in 2005 (Slovakia) and 2007 (Germany).
Download or read book Topological Data Analysis for Genomics and Evolution written by Raúl Rabadán and published by Cambridge University Press. This book was released on 2019-10-31 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.
Download or read book Topological Data Analysis written by Nils A. Baas and published by Springer Nature. This book was released on 2020-06-25 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 2018 Abel Symposium, which was held in Geiranger, Norway, on June 4-8, 2018. The symposium offered an overview of the emerging field of "Topological Data Analysis". This volume presents papers on various research directions, notably including applications in neuroscience, materials science, cancer biology, and immune response. Providing an essential snapshot of the status quo, it represents a valuable asset for practitioners and those considering entering the field.
Download or read book Persistence Theory From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.
Download or read book Computational Topology for Biomedical Image and Data Analysis written by Rodrigo Rojas Moraleda and published by CRC Press. This book was released on 2019-07-12 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
Download or read book Topological Methods in Data Analysis and Visualization III written by Peer-Timo Bremer and published by Springer Science & Business. This book was released on 2014-04-22 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.
Download or read book Topological Methods in Data Analysis and Visualization V written by Hamish Carr and published by Springer Nature. This book was released on 2020-12-10 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of peer-reviewed workshop papers provides comprehensive coverage of cutting-edge research into topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The book also addresses core research challenges such as the representation of large and complex datasets, and integrating numerical methods with robust combinatorial algorithms. In keeping with the focus of the TopoInVis 2017 Workshop, the contributions reflect the latest advances in finding experimental solutions to open problems in the sector. They provide an essential snapshot of state-of-the-art research, helping researchers to keep abreast of the latest developments and providing a basis for future work. Gathering papers by some of the world’s leading experts on topological techniques, the book represents a valuable contribution to a field of growing importance, with applications in disciplines ranging from engineering to medicine.
Download or read book Topological Methods in Data Analysis and Visualization IV written by Hamish Carr and published by Springer. This book was released on 2017-06-01 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contributions on topics ranging from novel applications of topological analysis for particular problems, through studies of the effectiveness of modern topological methods, algorithmic improvements on existing methods, and parallel computation of topological structures, all the way to mathematical topologies not previously applied to data analysis. Topological methods are broadly recognized as valuable tools for analyzing the ever-increasing flood of data generated by simulation or acquisition. This is particularly the case in scientific visualization, where the data sets have long since surpassed the ability of the human mind to absorb every single byte of data. The biannual TopoInVis workshop has supported researchers in this area for a decade, and continues to serve as a vital forum for the presentation and discussion of novel results in applications in the area, creating a platform to disseminate knowledge about such implementations throughout and beyond the community. The present volume, resulting from the 2015 TopoInVis workshop held in Annweiler, Germany, will appeal to researchers in the fields of scientific visualization and mathematics, domain scientists with an interest in advanced visualization methods, and developers of visualization software systems.
Download or read book Topological Persistence in Geometry and Analysis written by Leonid Polterovich and published by American Mathematical Soc.. This book was released on 2020-05-11 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.
Download or read book Geometric and Topological Inference written by Jean-Daniel Boissonnat and published by Cambridge University Press. This book was released on 2018-09-27 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.
Download or read book Topological Methods in Data Analysis and Visualization VI written by Ingrid Hotz and published by Springer Nature. This book was released on 2021-09-28 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nyköping, Sweden. The workshop regularly gathers some of the world’s leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
Download or read book Topological Data Analysis for Scientific Visualization written by Julien Tierny and published by Springer. This book was released on 2018-01-16 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
Download or read book Computational Homology written by Tomasz Kaczynski and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
Download or read book Topological Signal Processing written by Michael Robinson and published by Springer Science & Business Media. This book was released on 2014-01-07 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.
Download or read book Computational Topology written by Herbert Edelsbrunner and published by American Mathematical Society. This book was released on 2022-01-31 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.