EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Topics in Computational Wave Propagation

Download or read book Topics in Computational Wave Propagation written by Mark Ainsworth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Book Effective Computational Methods for Wave Propagation

Download or read book Effective Computational Methods for Wave Propagation written by Nikolaos A. Kampanis and published by CRC Press. This book was released on 2008-02-25 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable

Book Computational Wave Propagation

Download or read book Computational Wave Propagation written by Bjorn Engquist and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications COMPUTATIONAL WAVE PROPAGATION is based on the workshop with the same title and was an integral part of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Bjorn Engquist and Gregory A. Kriegsmann for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the Office of Naval Research, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE Although the field of wave propagation and scattering has its classical roots in the last century, it has enjoyed a rich and vibrant life over the past 50 odd years. Scientists, engineers, and mathematicians have devel oped sophisticated asymptotic and numerical tools to solve problems of ever increasing complexity. Their work has been spurred on by emerging and maturing technologies, primarily concerned with the propagation and reception of information, and the efficient transmission of energy. The vitality of this scientific field is not waning. Increased demands to precisely quantify, measure, and control the propagation and scattering of waves in increasingly complex settings pose challenging scientific and mathematical problems. These push the envelope of analysis and comput ing, just as their forerunners did 50 years ago. These modern technological problems range from using underwater sound to monitor and predict global warming, to periodically embedding phase-sensitive amplifiers in optical fibers to insure long range digital communication.

Book Direct and Inverse Problems in Wave Propagation and Applications

Download or read book Direct and Inverse Problems in Wave Propagation and Applications written by Ivan Graham and published by Walter de Gruyter. This book was released on 2013-10-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.

Book Wave Phenomena

    Book Details:
  • Author : Lui Lam
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461388562
  • Pages : 281 pages

Download or read book Wave Phenomena written by Lui Lam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: IJ:1 June of 1987 the Center for Applied Mathematics and Computer Science at San Jose State University received a bequest of over half a million dollars from the estate of Mrs. Marie Woodward. In the opening article of this collection of papers Jane Day, the founder of the Center, describes the background that led to this gift. In recognition of the bequest it was decided that a series of Woodward Conferences be established. The First Woodward Conference took place at San Jose State University on June 2-3 1988. The themes of the conference were the Theoretical, Computational and Practical Aspects of Wave Phenomena and these same themes have been used to divide the contributions to this volume. Part I is concerned with papers on theoretical aspects. This section includes papers on pseudo-differential operator techniques, inverse problems and the mathematical foundations of wave propagation in random media. Part II consists of papers that involve significant amounts of computation. Included are papers on the Fast Hartley Transform, computational algorithms for electromagnetic scattering problems, and nonlinear wave interaction problems in fluid mechanics. vi Part III contains papers with a genuine physics flavor. This final section illustrates the widespread importance of wave phenomena in physics. Among the phenomena considered are waves in the atmosphere, viscous fingering in liquid crystals, solitons and wave localization.

Book Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Download or read book Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 written by Gary Cohen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 923 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes articles on the mathematical modeling and numerical simulation of various wave phenomena. For many years Waves 2003 and its five prior conferences have been an important forum for discussions on wave propagation. The topic is equally important for fundamental sciences, engineering, mathematics and, in particular, for industrial applications. Areas of specific interest are acoustics, electromagnetics, elasticity and related inverse and optimization problems. This book gives an extensive overview of recent developments in a very active field of scientific computing.

Book Computational Seismology

    Book Details:
  • Author : Heiner Igel
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198717407
  • Pages : 340 pages

Download or read book Computational Seismology written by Heiner Igel and published by Oxford University Press. This book was released on 2017 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.

Book Wave Propagation in Viscoelastic and Poroelastic Continua

Download or read book Wave Propagation in Viscoelastic and Poroelastic Continua written by Martin Schanz and published by Springer Science & Business Media. This book was released on 2012-11-27 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

Book Wave Propagation in Complex Media

Download or read book Wave Propagation in Complex Media written by George Papanicolaou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.

Book Essentials of Computational Electromagnetics

Download or read book Essentials of Computational Electromagnetics written by Xin-Qing Sheng and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Book Inverse Problems in Wave Propagation

Download or read book Inverse Problems in Wave Propagation written by Guy Chavent and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems in wave propagation occur in geophysics, ocean acoustics, civil and environmental engineering, ultrasonic non-destructive testing, biomedical ultrasonics, radar, astrophysics, as well as other areas of science and technology. The papers in this volume cover these scientific and technical topics, together with fundamental mathematical investigations of the relation between waves and scatterers.

Book Wave Propagation Analysis with Boundary Element Method

Download or read book Wave Propagation Analysis with Boundary Element Method written by Chiara Guardasoni and published by Ledizioni. This book was released on 2010 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation analysis with boundary element method.

Book Waves in Nonlinear Pre Stressed Materials

Download or read book Waves in Nonlinear Pre Stressed Materials written by M. Destrade and published by Springer Science & Business Media. This book was released on 2007-11-08 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers in this book provide a state-of-the-art examination of waves in pre-stressed materials. You’ll gain new perspectives via a multi-disciplinary approach that interweaves key topics. These topics include the mathematical modeling of incremental material response (elastic and inelastic), an analysis of the governing differential equations, and boundary-value problems. Detailed illustrations help you visualize key concepts and processes.

Book Wave Propagation and Inversion

Download or read book Wave Propagation and Inversion written by William Edward Fitzgibbon and published by SIAM. This book was released on 1992-01-01 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of three volumes on topics that arose from a September 1989 conference in Houston on mathematical and computational issues in geophysical fluid and solid mechanics. The nine papers include discussions of waves in partially saturated porous media, wave propagation by step marching, and optimal fi

Book Waves and Fields in Inhomogenous Media

Download or read book Waves and Fields in Inhomogenous Media written by Weng Cho Chew and published by John Wiley & Sons. This book was released on 1999-02-02 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering/Electromagnetics Waves and Fields in Inhomogeneous Media A Volume in the IEEE Press Series on Electromagnetic Waves Donald G. Dudley, Series Editor ".it is one of the best wave propagation treatments to appear in many years." Gerardo G. Tango, CPG, Consulting Seismologist-Acoustician, Covington, LA This comprehensive text thoroughly covers fundamental wave propagation behaviors and computational techniques for waves in inhomogeneous media. The author describes powerful and sophisticated analytic and numerical methods to solve electromagnetic problems for complex media and geometry as well. Problems are presented as realistic models of actual situations which arise in the areas of optics, radio wave propagation, geophysical prospecting, nondestructive testing, biological sensing, and remote sensing. Key topics covered include: * Analytical methods for planarly, cylindrically and spherically layered media * Transient waves, including the Cagniard-de Hoop method * Variational methods for the scalar wave equation and the electromagnetic wave equation * Mode-matching techniques for inhomogeneous media * The Dyadic Green's function and its role in simplifying problem-solving in inhomogeneous media * Integral equation formulations and inverse problems * Time domain techniques for inhomogeneous media This book will be of interest to electromagnetics and remote sensing engineers, physicists, scientists, and geophysicists. This IEEE Press reprinting of the 1990 version published by Van Nostrand Reinhold incorporates corrections and minor updating. Also in the series. Mathematical Foundations for Electromagnetic Theory by Donald G. Dudley, University of Arizona at Tucson This volume in the series lays the mathematical foundations for the study of advanced topics in electromagnetic theory. Important subjects covered include linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. 1994 Hardcover 264 pp ISBN 0-7803-1022-5 IEEE Order No. PC3715 About the Series The IEEE Press Series on Electromagnetic Waves consists of new titles as well as reprints and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level.

Book Time Domain Scattering

    Book Details:
  • Author : P. A. Martin
  • Publisher : Cambridge University Press
  • Release : 2021-06-24
  • ISBN : 1108835597
  • Pages : 265 pages

Download or read book Time Domain Scattering written by P. A. Martin and published by Cambridge University Press. This book was released on 2021-06-24 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first thorough synthesis of methods for solving time-domain scattering problems, covering both theoretical and computational aspects.

Book Large Scale Scientific Computing

Download or read book Large Scale Scientific Computing written by Ivan Lirkov and published by Springer. This book was released on 2006-02-15 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 5th International Conference on Large-Scale Scientific Computations, LSSC 2005, held in Sozopol, Bulgaria in June 2005. The 75 revised full papers presented together with five invited papers were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections.