EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time lapse Seismic Modeling and Production Data Assimilation for Enhanced Oil Recovery and CO2 Sequestration

Download or read book Time lapse Seismic Modeling and Production Data Assimilation for Enhanced Oil Recovery and CO2 Sequestration written by Ajitabh Kumar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Production from a hydrocarbon reservoir is typically supported by water or carbon dioxide (CO2) injection. CO2 injection into hydrocarbon reservoirs is also a promising solution for reducing environmental hazards from the release of green house gases into the earth0́9s atmosphere. Numerical simulators are used for designing and predicting the complex behavior of systems under such scenarios. Two key steps in such studies are forward modeling for performance prediction based on simulation studies using reservoir models and inverse modeling for updating reservoir models using the data collected from field. The viability of time-lapse seismic monitoring using an integrated modeling of fluid flow, including chemical reactions, and seismic response is examined. A comprehensive simulation of the gas injection process accounting for the phase behavior of CO2-reservoir fluids, the associated precipitation/dissolution reactions, and the accompanying changes in porosity and permeability is performed. The simulation results are then used to model the changes in seismic response with time. The general observation is that gas injection decreases bulk density and wave velocity of the host rock system. Another key topic covered in this work is the data assimilation study for hydrocarbon reservoirs using Ensemble Kalman Filter (EnKF). Some critical issues related to EnKF based history matching are explored, primarily for a large field with substantial production history. A novel and efficient approach based on spectral clustering to select 0́optimal0́9 initial ensemble members is proposed. Also, well-specific black-oil or compositional streamline trajectories are used for covariance localization. Approach is applied to the Weyburn field, a large carbonate reservoir in Canada. The approach for optimal member selection is found to be effective in reducing the ensemble size which was critical for this large-scale field application. Streamline-based covariance localization is shown to play a very important role by removing spurious covariances between any well and far-off cell permeabilities. Finally, time-lapse seismic study is done for the Weyburn field. Sensitivity of various bulk seismic parameters viz velocity and impedance is calculated with respect to different simulation parameters. Results show large correlation between porosity and seismic parameters. Bulk seismic parameters are sensitive to net overburden pressure at its low values. Time-lapse changes in pore-pressure lead to changes in bulk parameters like velocity and impedance.

Book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

Download or read book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations', investigated the potential for monitoring CO2 floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO2 through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO2 monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO2. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO2 injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO2 was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO2, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO2 injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO2 was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO2 sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

Book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

Download or read book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations written by Brian E. Toelle and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The ''Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations'' project is investigating the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This project will involve the use of 4D seismic (time lapse seismic) to try to observe the movement of the injected CO{sub 2} through the reservoir. The differences between certain seismic attributes, such as amplitude, will be used to detect and map the movement of CO{sub 2} within the reservoir. This technique has recently been shown to be effective in CO{sub 2} monitoring in EOR projects such as Weyborne. The project is being conducted in the Charlton 30/31 field in northern Michigan Basin which is a Silurian pinnacle reef that has completed its primary production. This field is now undergoing enhanced oil recovery using CO{sub 2}. The CO{sub 2} flood was initiated the end of 2005 when the injection of small amounts of CO{sub 2} begin in the A1 Carbonate. This injection was conducted for 2 months before being temporarily halted in order for pressure measurements to be conducted. The determination of the reservoir's porosity distribution is proving to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model had to be developed. From this model, an accurate determination of porosity within the carbonate reservoir must be obtained. For this certain seismic attributes have been investigated. The study reservoirs in the Charlton 30/31 field range from 50 to 400 acres in size. The relatively small area to image makes 3-D seismic data acquisition reasonably cost effective. Permeability and porosity vary considerably throughout the reef, thus it is essential to perform significant reservoir characterization and modeling prior to implementing a CO{sub 2} flood to maximize recovery efficiency. Should this project prove successful, the same technique could be applied across a large spectrum of the industry. In Michigan alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. These reservoirs range in thickness from 200 to 400 ft and are at depths of 2000 to 5000 ft. Approximately 113 of these Niagaran oil fields have produced over 1 million bbls each and the total cumulative production is in excess of 300 million bbls and 1.4 Tcf. There could potentially be over 1 billion bbls of oil remaining in reefs in Michigan much of which could be mobilized utilizing techniques similar to those employed in this study.

Book Time Lapse Approach to Monitoring Oil  Gas  and CO2 Storage by Seismic Methods

Download or read book Time Lapse Approach to Monitoring Oil Gas and CO2 Storage by Seismic Methods written by Junzo Kasahara and published by Gulf Professional Publishing. This book was released on 2016-10-14 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Lapse Approach to Monitoring Oil, Gas, and CO2 Storage by Seismic Methods delivers a new technology to geoscientists, well logging experts, and reservoir engineers, giving them a new basis on which to influence decisions on oil and gas reservoir management. Named ACROSS (Accurately Controlled and Routinely Operated Signal System), this new evaluation method is presented to address more complex reservoirs, such as shale and heavy oil. The book also discusses prolonged production methods for enhanced oil recovery. The monitoring of storage zones for carbon capture are also included, all helping the petroleum and reservoir engineer to fully extend the life of a field and locate untapped pockets of additional oil and gas resources. Rounded out with case studies from locations such as Japan, Saudi Arabia, and Canada, this book will help readers, scientists, and engineers alike to better manage the life of their oil and gas resources and reservoirs. Benefits both geoscientists and reservoir engineers to optimize complex reservoirs such as shale and heavy oil Explains a more accurate and cost efficient reservoir monitoring technology called ACROSS (Accurately Controlled and Routinely Operated Signal System) Illustrates real-world application through multiple case studies from around the world

Book Practical Applications of Time lapse Seismic Data

Download or read book Practical Applications of Time lapse Seismic Data written by David H. Johnston and published by SEG Books. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.

Book Time lapse Seismic Monitoring for Enhanced Oil Recovery and Carbon Capture and Storage Field Site at the Cranfield Field  Mississippi

Download or read book Time lapse Seismic Monitoring for Enhanced Oil Recovery and Carbon Capture and Storage Field Site at the Cranfield Field Mississippi written by Julie Nicole Ditkof and published by . This book was released on 2013 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cranfield field, located in southwest Mississippi, is an enhanced oil recovery and carbon sequestration project that has been under a continuous supercritical CO2 injection by Denbury Onshore LLC since 2008. Two 3D seismic surveys were collected in 2007, pre-CO2 injection, and in 2010 after > 2 million tons of CO2 was injected into the subsurface. The goal of this study is to characterize a time-lapse response between two seismic surveys to understand where injected CO2 is migrating and to map the injected CO2 plume edge. In order to characterize a time-lapse response, the seismic surveys were cross equalized using a trace-by-trace time shift. A normalized root-mean-square (NRMS) difference value was then calculated to determine the repeatability of the data. The data were considered to have "good repeatability," so a difference volume was calculated and showed a coherent seismic amplitude anomaly located through the area of interest. A coherent seismic amplitude anomaly was also present below the area of interest, so a time delay analysis was performed and calculated a significant added velocity change. A Gassmann-Wood fluid substitution workflow was then performed at two well locations to predict a saturation profile and observe post-injection expected changes in compressional velocity values at variable CO2 saturations. Finally, acoustic impedance inversions were performed on the two seismic surveys and an acoustic impedance difference volume was calculated to compare with the fluid substitution results. The Gassmann-Wood fluid substitution results predicted smaller changes in acoustic impedance than those observed from acoustic impedance inversions. At the Cranfield field, time-lapse seismic analysis was successful in mapping and quantifying the acoustic impedance change for some seismic amplitude anomalies associated with injected CO2. Additional well log data and refinement of the fluid substitution workflow and the model-based inversion performed is necessary to obtain more accurate impedance changes throughout the field instead of at a single well location.

Book Time Lapse Approach to Monitoring Oil  Gas  and CO2 Storage by Seismic Methods

Download or read book Time Lapse Approach to Monitoring Oil Gas and CO2 Storage by Seismic Methods written by Junzō Kasahara and published by Gulf Professional Publishing, is. This book was released on 2017 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Named ACROSS (Accurately Controlled and Routinely Operated Signal System), this new evaluation method is presented to address more complex reservoirs, such as shale and heavy oil. The book also discusses prolonged production methods for enhanced oil recovery. The monitoring of storage zones for carbon capture are also included, all helping the petroleum and reservoir engineer to fully extend the life of a field and locate untapped pockets of additional oil and gas resources. Rounded out with case studies from locations such as Japan, Saudi Arabia, and Canada, this book will help readers, scientists, and engineers alike to better manage the life of their oil and gas resources and reservoirs."--Provided by publisher

Book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes

Download or read book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes written by Ravi Shekhar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured reservoirs, especially in low permeable carbonate rocks, are important target for hydrocarbon exploration and production because fractures can control fluid flow inside the reservoir. Hence, quantitative knowledge of fracture attributes is important for optimal hydrocarbon production. However, in some cases fractures can cause leakage of injected CO2 during enhanced oil recovery (EOR) or CO2 sequestration. Furthermore, CO2 can geochemically interact with reservoir fluids and host rock. Hence, time-lapse monitoring of the progress of CO2 in fractured reservoirs is also very important. In order to address these challenges, I have developed an integrated approach for studying fluid flow and seismic wave propagation in fractured media using Discrete Fracture Network (DFN) models. My seismic simulation study suggests that CO2 saturated reservoir shows approximately ten times more attenuation than brine saturated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My modeling study suggests that intra-aqueous reactions are more significant during injection of CO2 for t = 6 years, while slower mineral reactions dominate after pressure equilibrium is achieved that is from t = 6 to 1000 years. Overall both types of geochemical reactions cause change in reflection coefficient of 2 to 5%, which may be difficult to detect in some cases. However, the significant change in the seismic properties at the boundary of the CO2 front can be used to detect the flow path of CO2 inside the reservoirs. Finally, a method for generating stochastic fracture models was extended and improved to more realistic field model for seismic and fluid modeling. My detail analysis suggests that fractures generated by isotropic stress field favor orthogonal sets of fractures in most subsurface rocks that can be converted to seismic model, similar to DFN study. The quality and validity of the models is assessed by comparisons to DFN models, including calculations of fractal dimension measures that can help to characterize fractured reservoirs.

Book Fast History Matching of Time lapse Seismic and Production Data for High Resolution Models

Download or read book Fast History Matching of Time lapse Seismic and Production Data for High Resolution Models written by Eduardo Antonio Jimenez and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used extensively to demonstrate the value and contribution of this work. Our results show that the problem of non-uniqueness in this complex history matching problem is greatly reduced when constraints in the form of saturation maps from spatially closely sampled seismic data are included. Further on, our methodology can be used to quickly identify discrepancies between static and dynamic modeling. Reducing this gap will ensure robust and reliable models leading to accurate predictions and ultimately an optimum hydrocarbon extraction.

Book Time lapse Seismic in Reservoir Management

Download or read book Time lapse Seismic in Reservoir Management written by Ian Jack and published by . This book was released on 1997 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Time lapse Seismic Monitoring of Subsurface Fluid Flow

Download or read book Time lapse Seismic Monitoring of Subsurface Fluid Flow written by Sung H. Yuh and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection. Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.

Book Time Lapse Approach to Monitoring Oil  Gas  and CO   x82    x82   Storage by Seismic Methods

Download or read book Time Lapse Approach to Monitoring Oil Gas and CO x82 x82 Storage by Seismic Methods written by Junzō Kasahara and published by Gulf Professional Publishing, is. This book was released on 2017 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Named ACROSS (Accurately Controlled and Routinely Operated Signal System), this new evaluation method is presented to address more complex reservoirs, such as shale and heavy oil. The book also discusses prolonged production methods for enhanced oil recovery. The monitoring of storage zones for carbon capture are also included, all helping the petroleum and reservoir engineer to fully extend the life of a field and locate untapped pockets of additional oil and gas resources. Rounded out with case studies from locations such as Japan, Saudi Arabia, and Canada, this book will help readers, scientists, and engineers alike to better manage the life of their oil and gas resources and reservoirs."--Provided by publisher.

Book Integrated Flow Simulation and Time lapse Seismic Reservoir Characterization in Conjunction with an Enhanced Oil Recovery Project  Postle Field  Texas County  Oklahoma

Download or read book Integrated Flow Simulation and Time lapse Seismic Reservoir Characterization in Conjunction with an Enhanced Oil Recovery Project Postle Field Texas County Oklahoma written by Ayyoub E. Heris and published by . This book was released on 2011 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Modeling of Time lapse Seismic Experiments to Monitor Carbon Dioxide Sequestration in a Layered Basalt Reservoir

Download or read book Numerical Modeling of Time lapse Seismic Experiments to Monitor Carbon Dioxide Sequestration in a Layered Basalt Reservoir written by Murari Khatiwada and published by . This book was released on 2009 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Joint Inversion of Production and Time lapse Seismic Data

Download or read book Joint Inversion of Production and Time lapse Seismic Data written by Amit Suman and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic has evolved as an important diagnostic tool in efficient reservoir characterization and monitoring. Reservoir models, optimally constrained to seismic response, as well as flow response, can provide a better description of the reservoir and thus more reliable forecast. This dissertation focuses on different aspects of joint inversion of time-lapse seismic and production data for reservoir model updating, with application to the Norne field in the Norwegian Sea. This work describes a methodology for joint inversion of production and time-lapse seismic data, analyzes sensitive parameters in the joint inversion, identifies sensitive rock physics parameters for modeling time-lapse seismic response of a field and successfully applies and compares the family of particle swarm optimizers for joint inversion of production and time-lapse seismic data of the Norne field. The contributions from this research include a systematic workflow for joint inversion of time-lapse seismic and production data that can be and has been practically applied to a real field. Better reservoir models, constrained to both data will in turn lead to better reservoir forecasts and better field management. The first part of this thesis uses Norne field data to analyze sensitive parameters in joint inversion of production and time-lapse seismic data. An experimental design is performed on the parameters of the reservoir and seismic simulator. The results are used to rank the parameters in terms of sensitivity to production and time-lapse seismic data. At the same time it is shown that porosity/permeability models is not the most sensitive parameter for joint inversion of production and time-lapse seismic data of the Norne field. The parameters selected for study are porosity and permeability model, relative permeability, rock physics models, pore compressibility and fluid mixing. Results show that rock physics model has the most impact on time-lapse seismic whereas relative permeability is the most important parameter for production response. The results of this study are used in selecting the most important reservoir parameters for joint inversion of time-lapse seismic and production data of the Norne field. It is established that rock physics model is the most sensitive parameter for modeling time-lapse seismic of the Norne field, but there are rock physics parameters associated with rock physics model that impact time-lapse seismic modeling. So it is necessary to identify sensitive rock physics parameters for modeling time-lapse seismic response. Thus, the second part of this thesis identifies sensitive rock physics parameters in modeling time-lapse seismic response of Norne field. At first facies are classified based on well log data. Then sensitive parameters are investigated in the Gassmann's equation to generate the initial seismic velocities. The investigated parameters include mineral properties, water salinity, pore-pressure and gas-oil ratio (GOR). Next, parameter sensitivity for time-lapse seismic modeling of the Norne field is investigated. The investigated rock physics parameters are clay content, cement, pore-pressure and mixing. This sensitivity analysis helps to select important parameters for time-lapse (4D) seismic history matching which is an important aspect of joint inversion of production and time-lapse seismic of a field. Joint inversion of seismic and flow data for reservoir parameter is highly non-linear and complex. Local optimization methods may fail to obtain multiple history matched models. Recently stochastic optimization based inversion has shown very good results in the integration of time-lapse seismic and production data in reservoir history matching. Also, high dimensionality of the inverse problem makes the joint inversion of both data sets computationally expensive. High dimensionality of the inverse problem can be solved by using reduced order models. In this study, principal component bases derived from the prior is used to accomplish this. In the third part of the dissertation a family of particle swarm optimizers is used in combination with principal component bases for inversion of a synthetic data set. The performance of the different particle swarm optimizers is analyzed, both in terms of the quality of history match and convergence rate. Results show that particle swarm optimizers have very good convergence rate for a synthetic case. Also, these optimizers are used in combination with multi-dimensional scaling (MDS) to provide a set of porosity models whose simulated production and time-lapse seismic responses provide satisfactory match with the observed production and time-lapse seismic data. The goal of the last part is to apply the results of previous parts in joint inversion of production and time-lapse seismic data of the Norne field. Time-lapse seismic and production data of the Norne field is jointly inverted by varying the sensitive parameters identified in previous chapters and using different particle swarm optimizers. At first the time-lapse seismic surveys of the Norne field acquired in 2001 and 2004 is quantitatively interpreted and analyzed. Water was injected in the oil and gas producing Norne reservoir and repeat seismic surveys were conducted to monitor the subsurface fluids. The interpreted P-wave impedance change between 2001 and 2004 is used in the joint inversion loop as time-lapse seismic data. The application of different particle swarm optimizers provides a set of parameters whose simulated responses provide a satisfactory history match with the production and time-lapse seismic data of Norne field. It is shown that particle swarm optimizers have potential to be applied for joint inversion of the production and time-lapse seismic data of a real field data set.