EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time Domain Scattering

Download or read book Time Domain Scattering written by P. A. Martin and published by Cambridge University Press. This book was released on 2021-06-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The wave equation, a classical partial differential equation, has been studied and applied since the eighteenth century. Solving it in the presence of an obstacle, the scatterer, can be achieved using a variety of techniques and has a multitude of applications. This book explains clearly the fundamental ideas of time-domain scattering, including in-depth discussions of separation of variables and integral equations. The author covers both theoretical and computational aspects, and describes applications coming from acoustics (sound waves), elastodynamics (waves in solids), electromagnetics (Maxwell's equations) and hydrodynamics (water waves). The detailed bibliography of papers and books from the last 100 years cement the position of this work as an essential reference on the topic for applied mathematicians, physicists and engineers.

Book Time Domain Scattering

    Book Details:
  • Author : P. A. Martin
  • Publisher : Cambridge University Press
  • Release : 2021-06-24
  • ISBN : 1108835597
  • Pages : 265 pages

Download or read book Time Domain Scattering written by P. A. Martin and published by Cambridge University Press. This book was released on 2021-06-24 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first thorough synthesis of methods for solving time-domain scattering problems, covering both theoretical and computational aspects.

Book Plane Wave Theory of Time Domain Fields

Download or read book Plane Wave Theory of Time Domain Fields written by Thorkild B. Hansen and published by John Wiley & Sons. This book was released on 1999-06-10 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This invaluable book provides a comprehensive framework for the formulation and solution ofnumerous problems involving the radiation, reception, propagation, and scattering of electromagnetic and acoustic waves. Filled with original derivations and theorems, it includes the first rigorous development of plane-wave expansions for time-domain electromagnetic and acoustic fields. For the past 35 years, near-field measurement techniques have been confined to the frequency domain. Now, with the publication of this book, probe-corrected near-field measurement techniques have been extended to ultra-wide-band, short-pulse transmitting and receiving antennas and transducers. By combining unencumbered straightforward derivations with in-depth expositions of prerequisite material, the authors have created an invaluable resource for research scientists and engineers in electromagnetics and acoustics, and a definitive reference on plane-wave expansions and near-field measurements. Featured topics include: * An introduction to the basic electromagnetic and acoustic field equations * A rigorous development of time-domain and frequency-domain plane-wave representations * The formulation of time-domain, frequency-domain, and static planar near-field measurement techniques with and without probe-correction * Sampling theorems and computation schemes for time-domain and frequency-domain fields * Analytic-signal formulas that simplify the formulation and analysis of transient fields * Wave phenomena, such as ``electromagnetic missiles"" encountered only in the time domain * Definitive force and power relations for electromagnetic and acoustic fields and sources." Sponsored by: IEEE Antennas and Propagation Society.

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Book Light Scattering Reviews  Volume 11

Download or read book Light Scattering Reviews Volume 11 written by Alexander Kokhanovsky and published by Springer. This book was released on 2016-05-12 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: • the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; • chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; • the final chapter discusses the environmental polarimetry of man-made objects.

Book Scattering Analysis of Periodic Structures Using Finite Difference Time Domain

Download or read book Scattering Analysis of Periodic Structures Using Finite Difference Time Domain written by Khaled ElMahgoub and published by Morgan & Claypool Publishers. This book was released on 2012-05-01 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions

Book Linear and Nonlinear Inverse Scattering Algorithms Applied in 2 D Electromagnetics and Elastodynamics

Download or read book Linear and Nonlinear Inverse Scattering Algorithms Applied in 2 D Electromagnetics and Elastodynamics written by Jinghong Miao and published by kassel university press GmbH. This book was released on 2008 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Strategies for Time Domain Characterization of UWB Components and Systems

Download or read book Strategies for Time Domain Characterization of UWB Components and Systems written by Elena Pancera and published by KIT Scientific Publishing. This book was released on 2014-08-13 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work new methods and criteria for the analysis of Ultra Wideband (UWB) components and systems are introduced. This permit to have a deeper insight into the component characteristics like signal distortion, ringing and dispersion, introduced by the non-ideal behavior of the UWB components over the wide frequency band. The developed analyses are the basis for correction and optimization strategies for the features of the UWB components and systems, compensating for their non-idealities.

Book Time Domain Electromagnetics

Download or read book Time Domain Electromagnetics written by Sadasiva M. Rao and published by Elsevier. This book was released on 1999-07-26 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics deals with a specific technique in electromagnetics within the general area of electrical engineering. This mathematical method has become a standard for a wide variety of applications for design and problem solving. This method of analysis in electromagnetics is directly related to advances in cellular and mobile communications technology, as well as traditional EM areas such as radar, antennas, and wave propagation. Most of the material is available in the research journals which is difficult for a non-specialist to locate, read, understand, and effectively use for the problem at hand. Only book currently available to practicing engineers and research scientists exclusively devoted to this subject Includes contributions by the world's leading experts in electromagnetics Presents the most popular methods used in time domain analysis are included at one place with thorough discussion of the methods in an easily understandable style In each chapter, many simple and practical examples are discussed thoroughly to illustrate the salient points of the material presented All chapters are written in a consistent style that allows the book to be of use for self-study by professionals as well as for use in a graduate-level course in electrical engineering

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by CRC Press. This book was released on 2018-05-04 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book Scattering and Attenuations of Seismic Waves  Part I

Download or read book Scattering and Attenuations of Seismic Waves Part I written by AKI and published by Birkhäuser. This book was released on 2013-12-18 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 128 (1988), No. 1/2

Book Principles of Terahertz Time Domain Spectroscopy

Download or read book Principles of Terahertz Time Domain Spectroscopy written by Jean-Louis Coutaz and published by CRC Press. This book was released on 2018-12-07 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Terahertz time-domain spectroscopy (THz-TDS) is a unique technique for characterizing the response of materials and devices in the far-infrared region of the electromagnetic spectrum. Based on the measurement of transmitted or reflected ultra-short electromagnetic pulses and on a Fourier-transform of the recorded waveforms, THz-TDS permits fast and precise determination of the permittivity or permeability of materials over a wide bandwidth. This book is devoted to the determination of this spectral response of samples from the recorded waveforms.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Acoustic Interactions With Submerged Elastic Structures   Part Iii  Acoustic Propagation And Scattering  Wavelets And Time Frequency Analysis

Download or read book Acoustic Interactions With Submerged Elastic Structures Part Iii Acoustic Propagation And Scattering Wavelets And Time Frequency Analysis written by Dieter Guicking and published by World Scientific. This book was released on 2001-07-31 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interaction of acoustic fields with submerged elastic structures, both by propagation and scattering, is being investigated at various institutions and laboratories world-wide with ever-increasing sophistication of experiments and analysis. This book offers a collection of contributions from these research centers that represent the present state-of-the-art in the study of acoustic elastic interaction, being on the cutting edge of these investigations. This includes the description of acoustic scattering from submerged elastic objects and shells by the Resonance Scattering Theory of Flax, Dragonette and Überall, and the interaction of these phenomena in terms of interface waves. It also includes the use of this theory for the purpose of inverse scattering, i.e. the determination of the scattered objects properties from the received acoustic backscattered signals. The problem of acoustically excited waves in inhomogeneous and anisotropic materials, and of inhomogeneous propagating waves is considered. Vibrations and resonances of elastic shells, including shells with various kinds of internal attachments, are analyzed. Acoustic scattering experiments are described in the time domain, and on the basis of the Wigner-Ville distribution. Acoustic propagation in the water column over elastic boundaries is studied experimentally both in laboratory tanks, and in the field, and is analyzed theoretically. Ultrasonic nondestructive testing, including such aspects like probe modelling, scattering by various types of cracks, receiving probes and calibration by a side-drilled hole is also studied in details.A comprehensive picture of these complex phenomena and other aspects is presented in the book by researchers that are experts in each of these domains, giving up-to-date accounts of the field in all these aspects.

Book Electromagnetic Scattering by Particles and Particle Groups

Download or read book Electromagnetic Scattering by Particles and Particle Groups written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2014-04-24 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, accessible introduction to the basic concepts, formalism and recent advances in electromagnetic scattering, for researchers and graduate students.

Book Scattering  Absorption  and Emission of Light by Small Particles

Download or read book Scattering Absorption and Emission of Light by Small Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2002-06-06 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and up-to-date treatment of electromagnetic scattering by small particles.

Book Light Scattering by Nonspherical Particles

Download or read book Light Scattering by Nonspherical Particles written by Michael I. Mishchenko and published by Elsevier. This book was released on 1999-09-22 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications Individual chapters are written by leading experts in respective areas Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals Consistent use of unified definitions and notation makes the book a coherent volume An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web Extensively illustrated with over 200 figures, 4 in color