Download or read book Representations and Techniques for 3D Object Recognition and Scene Interpretation written by Derek Hoiem and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Download or read book Geometric Invariance in Computer Vision written by Joseph L. Mundy and published by . This book was released on 1992 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: These twenty-three contributions focus on the most recent developments in the rapidly evolving field of geometric invariants and their application to computer vision. The introduction summarizes the basics of invariant theory, discusses how invariants are related to problems in computer vision, and looks at the future possibilities, particularly the notion that invariant analysis might provide a solution to the elusive problem of recognizing general curved 3D objects from an arbitrary viewpoint. The remaining chapters consist of original papers that present important developments as well as tutorial articles that provide useful background material. These chapters are grouped into categories covering algebraic invariants, nonalgebraic invariants, invariants of multiple views, and applications. An appendix provides an extensive introduction to projective geometry and its applications to basic problems in computer vision.
Download or read book Practical Machine Learning for Computer Vision written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2021-07-21 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Download or read book The Neuropsychology of High level Vision written by Martha J. Farah and published by Psychology Press. This book was released on 2013-04-15 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a state-of-the-art review of high-level vision and the brain. Topics covered include object representation and recognition, category-specific visual knowledge, perceptual processes in reading, top-down processes in vision -- including attention and mental imagery -- and the relations between vision and conscious awareness. Each chapter includes a tutorial overview emphasizing the current state of knowledge and outstanding theoretical issues in the authors' area of research, along with a more in-depth report of an illustrative research project in the same area. The editors and contributors to this volume are among the most respected figures in the field of neuropsychology and perception, making the work presented here a standard-setting text and reference in that area.
Download or read book Representations and Techniques for 3D Object Recognition and Scene Interpretation written by Derek Santhanam and published by Springer Nature. This book was released on 2022-05-31 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Download or read book Advances in Pattern Recognition written by Francesc J. Ferri and published by Springer. This book was released on 2003-06-26 with total page 918 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the joint refereed proceedings of the 8th International Workshop on Structural and Syntactic Pattern Recognition and the 3rd International Workshop on Statistical Techniques in Pattern Recognition, SSPR 2000 and SPR 2000, held in Alicante, Spain in August/September 2000. The 52 revised full papers presented together with five invited papers and 35 posters were carefully reviewed and selected from a total of 130 submissions. The book offers topical sections on hybrid and combined methods, document image analysis, grammar and language methods, structural matching, graph-based methods, shape analysis, clustering and density estimation, object recognition, general methodology, and feature extraction and selection.
Download or read book A Guide for Machine Vision in Quality Control written by Sheila Anand and published by CRC Press. This book was released on 2019-12-23 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome. A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions. The book offers comprehensive coverage of the essential topics, that includes: Introduction to Machine Vision Fundamentals of Digital Images Discussion of various machine vision system components Digital image processing related to quality control Overview of automation The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future. Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing and trading organizations. She guides Ph.D. aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers and won several paper awards in International Conferences. She has published several papers in International journals and is a reviewer for SCI indexed journals. Her areas of interest include Machine Vision, Wireless Communication and Machine Learning.
Download or read book Pattern Recognition and Computer Vision written by Yuxin Peng and published by Springer Nature. This book was released on 2020-10-11 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 12305, 12306, and 12307 constitutes the refereed proceedings of the Third Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020, held virtually in Nanjing, China, in October 2020. The 158 full papers presented were carefully reviewed and selected from 402 submissions. The papers have been organized in the following topical sections: Part I: Computer Vision and Application, Part II: Pattern Recognition and Application, Part III: Machine Learning.
Download or read book Image Analysis and Recognition written by Aurélio Campilho and published by Springer Science & Business Media. This book was released on 2006-09-13 with total page 923 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICIAR 2006, the International Conference on Image Analysis and Recognition, was the third ICIAR conference, and was held in P ́ ovoa de Varzim, Portugal. ICIARisorganizedannually,andalternatesbetweenEuropeandNorthAmerica. ICIAR 2004 was held in Porto, Portugal and ICIAR 2005 in Toronto, Canada. The idea of o?ering these conferences came as a result of discussion between researchers in Portugal and Canada to encourage collaboration and exchange, mainlybetweenthesetwocountries,butalsowiththeopenparticipationofother countries, addressing recent advances in theory, methodology and applications. The response to the call for papers for ICIAR 2006 was higher than the two previous editions. From 389 full papers submitted, 163 were ?nally accepted (71 oral presentations, and 92 posters). The review process was carried out by the Program Committee members and other reviewers; all are experts in various image analysis and recognition areas. Each paper was reviewed by at least two reviewers, and also checked by the conference Co-chairs. The high quality of the papers in these proceedings is attributed ?rst to the authors, and second to the quality of the reviews provided by the experts. We would like to thank the authors for responding to our call, and we wholeheartedly thank the reviewers for their excellent work and for their timely response. It is this collective e?ort that resulted in the strong conference program and high-quality proceedings in your hands.
Download or read book Neural Information Processing written by Long Cheng and published by Springer. This book was released on 2018-12-03 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set of LNCS 11301-11307 constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 6th volume, LNCS 11306, is organized in topical sections on time-series analysis; social systems; and image and signal processing.
Download or read book 3D Computer Vision written by Yu-Jin Zhang and published by Springer Nature. This book was released on with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zusammenfassung: This book offers a comprehensive and unbiased introduction to 3D Computer Vision, ranging from its foundations and essential principles to advanced methodologies and technologies. Divided into 11 chapters, it covers the main workflow of 3D computer vision as follows: camera imaging and calibration models; various modes and means of 3D image acquisition; binocular, trinocular and multi-ocular stereo vision matching techniques; monocular single-image and multi-image scene restoration methods; point cloud data processing and modeling; simultaneous location and mapping; generalized image and scene matching; and understanding spatial-temporal behavior. Each topic is addressed in a uniform manner: the dedicated chapter first covers the essential concepts and basic principles before presenting a selection of typical, specific methods and practical techniques. In turn, it introduces readers to the most important recent developments, especially in the last three years. This approach allows them to quickly familiarize themselves with the subject, implement the techniques discussed, and design or improve their own methods for specific applications. The book can be used as a textbook for graduate courses in computer science, computer engineering, electrical engineering, data science, and related subjects. It also offers a valuable reference guide for researchers and practitioners alike
Download or read book Perceptual Organization for Artificial Vision Systems written by Kim L. Boyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perceptual Organization for Artificial Vision Systems is an edited collection of invited contributions based on papers presented at The Workshop on Perceptual Organization in Computer Vision, held in Corfu, Greece, in September 1999. The theme of the workshop was `Assessing the State of the Community and Charting New Research Directions.' Perceptual organization can be defined as the ability to impose structural regularity on sensory data, so as to group sensory primitives arising from a common underlying cause. This book explores new models, theories, and algorithms for perceptual organization. Perceptual Organization for Artificial Vision Systems includes contributions by the world's leading researchers in the field. It explores new models, theories, and algorithms for perceptual organization, as well as demonstrates the means for bringing research results and theoretical principles to fruition in the construction of computer vision systems. The focus of this collection is on the design of artificial vision systems. The chapters comprise contributions from researchers in both computer vision and human vision.
Download or read book Computer Vision ECCV 2016 written by Bastian Leibe and published by Springer. This book was released on 2016-09-16 with total page 910 pages. Available in PDF, EPUB and Kindle. Book excerpt: The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions.
Download or read book Hybrid Intelligence for Image Analysis and Understanding written by Siddhartha Bhattacharyya and published by John Wiley & Sons. This book was released on 2017-07-27 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synergy of techniques on hybrid intelligence for real-life image analysis Hybrid Intelligence for Image Analysis and Understanding brings together research on the latest results and progress in the development of hybrid intelligent techniques for faithful image analysis and understanding. As such, the focus is on the methods of computational intelligence, with an emphasis on hybrid intelligent methods applied to image analysis and understanding. The book offers a diverse range of hybrid intelligence techniques under the umbrellas of image thresholding, image segmentation, image analysis and video analysis. Key features: Provides in-depth analysis of hybrid intelligent paradigms. Divided into self-contained chapters. Provides ample case studies, illustrations and photographs of real-life examples to illustrate findings and applications of different hybrid intelligent paradigms. Offers new solutions to recent problems in computer science, specifically in the application of hybrid intelligent techniques for image analysis and understanding, using well-known contemporary algorithms. The book is essential reading for lecturers, researchers and graduate students in electrical engineering and computer science.
Download or read book Computer Vision Imaging and Computer Graphics Theory and Applications written by AlpeshKumar Ranchordas and published by Springer. This book was released on 2010-08-16 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes extended versions of the selected papers from VISIGRAPP 2009, the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, which was held in Lisbon, Portugal, during February 5–8, 2009 and organized by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC). VISIGRAPP comprises three component conferences, namely, the International Conference on Computer Vision Theory and Applications (VISAPP), the International Conference on Computer Graphics Theory and Applications (GRAPP), and the International Conference on Imaging Theory and Applications (IMAGAPP). VISIGRAPP received a total of 422 paper submissions from more than 50 co- tries. From these, and after a rigorous double-blind evaluation method, 72 papers were published as full papers. These figures show that this conference is now an - tablished venue for researchers in the broad fields of computer vision, computer graphics and image analysis. From the full papers, 25 were selected for inclusion in this book. The selection process was based on the scores assigned by the Program Committee reviewers as well as the Session Chairs. After selection, the papers were further revised and extended by the authors. Our gratitude goes to all contributors and referees, without whom this book would not have been possible.
Download or read book Perceptual Constancy written by Vincent Walsh and published by Cambridge University Press. This book was released on 1998-08-13 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is not always truly reflected in what we see. The brain creates images, fills in gaps and even at times constructs fictions. This book brings together experts from several diverse fields to present state of the art accounts of how the visual world enters two small holes in our heads and is reconstructed to give us the rich impressions of color, movement, and shape.
Download or read book Advances in Object Recognition Systems written by Ioannis Kypraios and published by BoD – Books on Demand. This book was released on 2012-05-09 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invariant object recognition system needs to be able to recognise the object under any usual a priori defined distortions such as translation, scaling and in-plane and out-of-plane rotation. Ideally, the system should be able to recognise (detect and classify) any complex scene of objects even within background clutter noise. In this book, we present recent advances towards achieving fully-robust object recognition. The relation and importance of object recognition in the cognitive processes of humans and animals is described as well as how human- and animal-like cognitive processes can be used for the design of biologically-inspired object recognition systems. Colour processing is discussed in the development of fully-robust object recognition systems. Examples of two main categories of object recognition systems, the optical correlators and pure artificial neural network architectures, are given. Finally, two examples of object recognition's applications are described in details. With the recent technological advancements object recognition becomes widely popular with existing applications in medicine for the study of human learning and memory, space science and remote sensing for image analysis, mobile computing and augmented reality, semiconductors industry, robotics and autonomous mobile navigation, public safety and urban management solutions and many more others. This book is a "must-read" for everyone with a core or wider interest in this "hot" area of cutting-edge research.