EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory of the Inhomogeneous Electron Gas

Download or read book Theory of the Inhomogeneous Electron Gas written by Stig Lundqvist and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of the inhomogeneous electron gas had its origin in the Thomas Fermi statistical theory, which is discussed in the first chapter of this book. This already leads to significant physical results for the binding energies of atomic ions, though because it leaves out shell structure the results of such a theory cannot reflect the richness of the Periodic Table. Therefore, for a long time, the earlier method proposed by Hartree, in which each electron is assigned its own personal wave function and energy, dominated atomic theory. The extension of the Hartree theory by Fock, to include exchange, had its parallel in the density description when Dirac showed how to incorporate exchange in the Thomas-Fermi theory. Considerably later, in 1951, Slater, in an important paper, showed how a result similar to but not identical with that of Dirac followed as a simplification of the Hartree-Fock method. It was Gombas and other workers who recognized that one could also incorporate electron correlation consistently into the Thomas-Fermi-Dirac theory by using uniform electron gas relations locally, and progress had been made along all these avenues by the 1950s.

Book Theory of the Inhomogeneous Electron Gas

Download or read book Theory of the Inhomogeneous Electron Gas written by Stig Lundqvist and published by . This book was released on 1983 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Many body Theory of a Rapidly Varying Inhomogeneous Electron Gas

Download or read book Many body Theory of a Rapidly Varying Inhomogeneous Electron Gas written by John William Gadzuk and published by . This book was released on 1968 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The case of an inhomogeneous electron gas within which the density variation is significant over a spatial range of the order of a Fermi wave-length is considered in this report. It is seen that for most systems of physical interest, this sort of non-uniformity is a result of diffraction effects. This is a fundamentally different phenomenon than can reasonably be treated by the density gradient method of Kohn for slowly varying inhomogeneous electron gases. Several sample cases are treated. The first considerations are directed towards the problem of a weak periodic potential in an interacting electron gas. The momentum-dependent self-energy is calculated for an electron propagating in the many-body medium of an electron gas plus a periodic lattice pseudo-potential. This is the equivalent of a quasi-particle energy spectrum and thus an orthogonalized plane wave energy band. It does not appear that the lattice drastically changes qualitative aspects of plane wave many-body theory. A dielectric formulation for a general inhomogeneous electron gas is presented. By introducing a new image technique, the dielectric function within the random phase approximation, which is valid in the surface region of an electron gas, is obtained. A Green's function formalism is developed for treating the static dielectric screening of a point impurity in an electron gas. The surface dielectric function is used with the impurity screening formalism to treat the problem of impurity screening in the surface region. This is an idealized model of ionic adsorption on metal surface. Screening charge densities resulting from volume polarization effects are calculated. From these results, it is seen why unjustifiable application of classical image forces in previous adsorption theories has fortunately produced reasonable results. A new method for obtaining the appropriate plasmon contribution to the electron self-energy in the surface region is developed. With these results, the electron gas surface potentials calculated by Loucks and Cutler are then improved.

Book Applications of the Theory of the Inhomogeneous Electron Gas

Download or read book Applications of the Theory of the Inhomogeneous Electron Gas written by James Harold Rose and published by . This book was released on 1976 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Density Functional Theory of Many Electron Systems

Download or read book Energy Density Functional Theory of Many Electron Systems written by Eugene S. Kryachko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrons In Metals And Alloys

Download or read book Electrons In Metals And Alloys written by J. A. Alonso and published by Academic Press. This book was released on 2012-12-02 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a broad review of the electronic structure of metals and alloys. It emphasises the way in which the behavior of electrons in these materials governs the thermodynamic and other properties of these conducting materials. The theoretical treatment proceeds from a wave mechanics approach to more sophisticated techniques for the description of the properties of metals and alloys.

Book Quantum Theory of the Electron Liquid

Download or read book Quantum Theory of the Electron Liquid written by Gabriele Giuliani and published by Cambridge University Press. This book was released on 2005-03-31 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description

Book Density Functional Theory

    Book Details:
  • Author : Reiner M. Dreizler
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642861059
  • Pages : 312 pages

Download or read book Density Functional Theory written by Reiner M. Dreizler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.

Book Density Functional Theory of Atoms and Molecules

Download or read book Density Functional Theory of Atoms and Molecules written by Robert G. Parr and published by Oxford University Press. This book was released on 1994-05-26 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a rigorous, unified account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. Containing a detailed discussion of the chemical potential and its derivatives, it provides an understanding of the concepts of electronegativity, hardness and softness, and chemical reactivity. Both the Hohenberg-Kohn-Sham and the Levy-Lieb derivations of the basic theorems are presented, and extensive references to the literature are included. Two introductory chapters and several appendices provide all the background material necessary beyond a knowledge of elementary quantum theory. The book is intended for physicists, chemists, and advanced students in chemistry.

Book Molecules in Physics  Chemistry  and Biology

Download or read book Molecules in Physics Chemistry and Biology written by J. Maruani and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1: General Introduction to Molecular Sciences Volume 2: Physical Aspects of Molecular Systems Volume 3: Electronic Structure and Chemical Reactivity Volume 4: Molecular Phenomena in Biological Sciences

Book Defects and Impurities in Silicon Materials

Download or read book Defects and Impurities in Silicon Materials written by Yutaka Yoshida and published by Springer. This book was released on 2016-03-30 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

Book Many Body Approach to Electronic Excitations

Download or read book Many Body Approach to Electronic Excitations written by Friedhelm Bechstedt and published by Springer. This book was released on 2014-12-01 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.

Book Theoretical Surface Science

Download or read book Theoretical Surface Science written by Axel Groß and published by Springer Science & Business Media. This book was released on 2009-09-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress continues in the theoretical treatment of surfaces and processes on surfaces based on first-principles methods, i.e. without invoking any empirical parameters. In this book, the theoretical concepts and computational tools necessary and relevant for a microscopic approach to the theoretical description of surface science is presented, together with a detailed discussion of surface phenomena. This makes the book suitable for both graduate students and for experimentalists seeking an overview of the theoretical concepts in surface science. This second enlarged edition has been carefully revised and updated, a new chapter on surface magnetism is included, and novel developments in theoretical surface science are addressed.

Book Many body Theory Of Molecules  Clusters And Condensed Phases

Download or read book Many body Theory Of Molecules Clusters And Condensed Phases written by Norman H March and published by World Scientific. This book was released on 2009-09-29 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive review of seminal as well as recent results in the theory of condensed phases, including liquid metals, quantum liquids and Wigner crystals, along with selected applications, especially in the physical chemistry of molecules and clusters. A large part of this work is dedicated to the Thomas-Fermi semiclassical approximation for molecules and condensed phases, and its extension to inhomogeneous electron liquids and liquid metals. Correlation effects in quantum liquids and Wigner crystallization are other areas of focus of this work, with an emphasis towards the effect of low dimensionality and magnetic fields. The volume is a collection of reprints by N H March and collaborators over five decades.

Book Computational Electronics

Download or read book Computational Electronics written by Dragica Vasileska and published by CRC Press. This book was released on 2017-12-19 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift-diffusion, hydrodynamic, and Monte Carlo methods for solving the Boltzmann transport equation. Details regarding numerical implementation and sample codes are provided as templates for sophisticated simulation software. The second part introduces the density gradient method, quantum hydrodynamics, and the concept of effective potentials used to account for quantum-mechanical space quantization effects in particle-based simulators. Highlighting the need for quantum transport approaches, it describes various quantum effects that appear in current and future devices being mass-produced or fabricated as a proof of concept. In this context, it introduces the concept of effective potential used to approximately include quantum-mechanical space-quantization effects within the semiclassical particle-based device simulation scheme. Addressing the practical aspects of computational electronics, this authoritative resource concludes by addressing some of the open questions related to quantum transport not covered in most books. Complete with self-study problems and numerous examples throughout, this book supplies readers with the practical understanding required to create their own simulators.

Book Quantum Mechanics with Applications to Nanotechnology and Information Science

Download or read book Quantum Mechanics with Applications to Nanotechnology and Information Science written by Yehuda B. Band and published by Academic Press. This book was released on 2013-01-10 with total page 993 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Book Molecular Interactions

    Book Details:
  • Author : David A. Micha
  • Publisher : John Wiley & Sons
  • Release : 2019-11-18
  • ISBN : 1119319021
  • Pages : 400 pages

Download or read book Molecular Interactions written by David A. Micha and published by John Wiley & Sons. This book was released on 2019-11-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, comprehensive text and reference describing intermolecular forces, this book begins with coverage of the concepts and methods for simpler systems, then moves on to more advanced subjects for complex systems – emphasizing concepts and methods used in calculations with realistic models and compared with empirical data. Contains applications to many physical systems and worked examples Proceeds from introductory material to advanced modern treatments Has relevance for new materials, biological phenomena, and energy and fuels production