Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer Science & Business Media. This book was released on 2005-11-28 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer Science & Business Media. This book was released on 2005-05-11 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
Download or read book Random Sets written by John Goutsias and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Download or read book Random Sets in Econometrics written by Ilya Molchanov and published by Cambridge University Press. This book was released on 2018-04-12 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first full-length study of how the theory of random sets can be applied in econometrics.
Download or read book Theory of Probability and Random Processes written by Leonid Koralov and published by Springer Science & Business Media. This book was released on 2007-08-10 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.
Download or read book Ergodic Theory of Random Transformations written by Yuri Kifer and published by Birkhäuser. This book was released on 2012-06-02 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.
Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book The Geometry of Random Fields written by Robert J. Adler and published by SIAM. This book was released on 2010-01-28 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.
Download or read book Radically Elementary Probability Theory written by Edward Nelson and published by Princeton University Press. This book was released on 1987 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form.
Download or read book An Introduction to the Theory of Point Processes written by D.J. Daley and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Download or read book Problems in Probability Theory Mathematical Statistics and Theory of Random Functions written by A. A. Sveshnikov and published by Courier Corporation. This book was released on 2012-04-30 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.
Download or read book The Brownian Motion written by Andreas Löffler and published by Springer. This book was released on 2019-07-03 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook is the first to provide Business and Economics Ph.D. students with a precise and intuitive introduction to the formal backgrounds of modern financial theory. It explains Brownian motion, random processes, measures, and Lebesgue integrals intuitively, but without sacrificing the necessary mathematical formalism, making them accessible for readers with little or no previous knowledge of the field. It also includes mathematical definitions and the hidden stories behind the terms discussing why the theories are presented in specific ways.
Download or read book Random Fields and Geometry written by R. J. Adler and published by Springer Science & Business Media. This book was released on 2009-01-29 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.
Download or read book A Course in Probability Theory written by Kai Lai Chung and published by Academic Press. This book was released on 2014-06-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains about 500 exercises consisting mostly of special cases and examples, second thoughts and alternative arguments, natural extensions, and some novel departures. With a few obvious exceptions they are neither profound nor trivial, and hints and comments are appended to many of them. If they tend to be somewhat inbred, at least they are relevant to the text and should help in its digestion. As a bold venture I have marked a few of them with a * to indicate a "must", although no rigid standard of selection has been used. Some of these are needed in the book, but in any case the reader's study of the text will be more complete after he has tried at least those problems.
Download or read book Topics in Random Matrix Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-03-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Download or read book Probability and Random Processes written by Scott Miller and published by Academic Press. This book was released on 2012-01-11 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques.