Download or read book Theory of Neural Information Processing Systems written by A.C.C. Coolen and published by OUP Oxford. This book was released on 2005-07-21 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
Download or read book Theory of Neural Information Processing Systems written by Anthony C. C. Coolen and published by Oxford University Press, USA. This book was released on 2005 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary graduate text gives a full, explicit, coherent and up-to-date account of the modern theory of neural information processing systems and is aimed at student with an undergraduate degree in any quantitative discipline (e.g. computer science, physics, engineering, biology, or mathematics). The book covers all the major theoretical developments from the 1940s tot he present day, using a uniform and rigorous style of presentation and of mathematical notation. The text starts with simple model neurons and moves gradually to the latest advances in neural processing. An ideal textbook for postgraduate courses in artificial neural networks, the material has been class-tested. It is fully self contained and includes introductions to the various discipline-specific mathematical tools as well as multiple exercises on each topic.
Download or read book Advances in Neural Information Processing Systems 12 written by Sara A. Solla and published by MIT Press. This book was released on 2000 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Download or read book Advances in Neural Information Processing Systems 11 written by Michael S. Kearns and published by MIT Press. This book was released on 1999 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Download or read book Advances in Neural Information Processing Systems 15 written by Suzanna Becker and published by MIT Press. This book was released on 2003 with total page 1738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 2002 Neural Information Processing Systems Conference.
Download or read book Advances in Neural Information Processing Systems 10 written by Michael I. Jordan and published by MIT Press. This book was released on 1998 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.
Download or read book Advances in Neural Information Processing Systems 17 written by Lawrence K. Saul and published by MIT Press. This book was released on 2005 with total page 1710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.
Download or read book Advances in Neural Information Processing Systems 19 written by Bernhard Schölkopf and published by MIT Press. This book was released on 2007 with total page 1668 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
Download or read book Introduction To The Theory Of Neural Computation written by John A. Hertz and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Download or read book Predicting Structured Data written by Neural Information Processing Systems Foundation and published by MIT Press. This book was released on 2007 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.
Download or read book Advances in Neural Information Processing Systems 13 written by Todd K. Leen and published by MIT Press. This book was released on 2001 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 2000 Neural Information Processing Systems (NIPS) Conference.The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.
Download or read book Advances in Neural Information Processing Systems 8 written by David S. Touretzky and published by MIT Press. This book was released on 1996 with total page 1128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen greatly increased interaction between theoretical work in neuroscience, cognitive science and information processing, and experimental work requiring sophisticated computational modeling. The 152 contributions in NIPS 8 focus on a wide variety of algorithms and architectures for both supervised and unsupervised learning. They are divided into nine parts: Cognitive Science, Neuroscience, Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Vision, Applications, and Control. Chapters describe how neuroscientists and cognitive scientists use computational models of neural systems to test hypotheses and generate predictions to guide their work. This work includes models of how networks in the owl brainstem could be trained for complex localization function, how cellular activity may underlie rat navigation, how cholinergic modulation may regulate cortical reorganization, and how damage to parietal cortex may result in neglect. Additional work concerns development of theoretical techniques important for understanding the dynamics of neural systems, including formation of cortical maps, analysis of recurrent networks, and analysis of self- supervised learning. Chapters also describe how engineers and computer scientists have approached problems of pattern recognition or speech recognition using computational architectures inspired by the interaction of populations of neurons within the brain. Examples are new neural network models that have been applied to classical problems, including handwritten character recognition and object recognition, and exciting new work that focuses on building electronic hardware modeled after neural systems. A Bradford Book
Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
Download or read book Advances in Neural Information Processing Systems 16 written by Sebastian Thrun and published by MIT Press. This book was released on 2004 with total page 1694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
Download or read book Probabilistic Models of the Brain written by Rajesh P.N. Rao and published by MIT Press. This book was released on 2002-03-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Download or read book Spike timing dependent plasticity written by Henry Markram and published by Frontiers E-books. This book was released on with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.