EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theory of Defects in N type Transparent Conducting Oxides

Download or read book Theory of Defects in N type Transparent Conducting Oxides written by Qing Hou and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding the Oxidation and Reduction Process in Transparent Conducting Oxides

Download or read book Understanding the Oxidation and Reduction Process in Transparent Conducting Oxides written by Michael John Campion and published by . This book was released on 2019 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transparent conductors play important roles in many optoelectronic devices such as LEDs, thin film solar cells, and smart windows through their ability to efficiently transport both photons and electrons. Simultaneous requirements of a wide band gap, high free carrier concentration, and high electron mobility limits the selection of available transparent conductor materials. Further improvements in the optical and electrical properties, along with improvements in processing tolerance, are highly desirable for this material class. One key limitation of current transparent conducting oxides is their response to oxidation, which can cause severe decreases to the conductivity of the material through ionic compensation. Materials with slow oxygen kinetics or resistance to the formation of compensating ionic defects could lead to more flexible operating and processing conditions for applications requiring transparent conductors. The properties of transparent conducting oxides, Al-doped ZnO and La-doped BaSnO3, were examined through a variety of methods with a focus on the impact of processing on the free carrier concentration, electron transport, and optical properties. Al-doped ZnO was examined as a well-known alternative to indium tin oxide (ITO) that has been shown to be limited by relatively narrow processing conditions and large variances in reported properties. BaSnO3 is a comparatively new material in the field of transparent conductors, attractive mainly due to its exceptionally high electron mobility for an oxide. Little is currently known about the nature of defects and processing on the optical and electrical properties of this material, but this information will be important to understand before implementing this material in practical devices. For these materials, I examined the roles of oxygen stoichiometry and point defect formation in impacting properties and stability under both processing conditions and harsh operating conditions and explored the limitations and opportunities provided by these transparent conducting oxide systems. Al-doped ZnO thin films were produced by pulsed laser deposition under a variety of oxygen conditions demonstrating the strong dependence of free electron concentration and mobility on the oxidation state of the material. The free carrier absorption in the infrared photon range was measured and modeled and found to agree well with theory assuming ionized impurity scattering as the limiting electron scattering mechanism. These effects were understood through the framework of the formation of compensating zinc vacancies under oxidizing conditions, leading to decreases in the free electron concentration. Atom probe tomography was applied to Al-doped ZnO thin films deposited on Si substrates, demonstrating an effective accumulation of Al near the ZnO/Si interface, but with no detected precipitation or agglomeration in the x-y plane of the film, even for heavily doped films. This was surprising due to the high concentration of Al-dopant in the material, exceeding the thermodynamic solubility limit of bulk ZnO. An accumulation of Al-dopant was observed at the ZnO/Si interface under multiple conditions, with the oxygen atmosphere during deposition and nature of the Si substrate affecting the degree of accumulation. Because transparent conductors are typically used to transfer charge through interfaces, understanding the nature and implications of this observed accumulation effect could be essential to understanding device performance. La-doped and undoped BaSnO3 thin films and bulk samples were tested for their electrical conductivity in-situ under various temperatures and oxygen partial pressures. In the undoped case, a p-type to n-type transition was observed at lower temperatures with decreasing oxygen partial pressure, with the behavior correlated to the formation and annihilation of oxygen and cation vacancies. Under donor-doping, a measurable, but weak n-type dependence of conductivity was demonstrated, pointing to a surprisingly weak role played by cation vacancy charge compensation over the measured temperature ranges. Compared to other similar oxide systems, compensation by cation vacancies would normally be expected to be strong under oxidizing conditions. This is a key advantage for La-doped BaSnO3 as a high temperature oxygen stable material compared to other competing materials that are more susceptible to conductivity degradation due to ionic compensation of the donor dopant under oxidizing conditions. This was directly demonstrated in the testing of the conductivity response of La-doped BaSnO3 thin films that maintained high conductivity under a large range of oxygen and temperature conditions. Oxygen diffusion in the material was estimated from conductivity relaxation and further explored with oxygen tracer diffusion studies. These studies revealed an activation energy of 2 eV for the oxygen diffusion process, as well as a depth dependent diffusivity leading to depressed oxygen diffusivities near the surface. Study of epitaxial and polycrystalline thin films of La-doped BaSnO3 revealed a difference in the rate of oxidation response of the conductivity. Epitaxial thin films exhibited a weak power law dependence on temperature while polycrystalline thin films under oxidizing conditions exhibited an activation energy of 0.36 eV. This effect was attributed to the formation of narrow space charge regions at the grain boundaries under oxidizing conditions. Simultaneous measurements of the infrared transmission and electrical conductivity of thin films were performed as a means of correlating infrared transmission with conductivity at high temperatures under various controlled atmospheres. These two measurements were found to be strongly correlated and were demonstrated to be connected to the formation and annihilation of free carriers in the thin films. A novel measurement technique was explored in which the conductance response was measured across a substrate during pulsed laser deposition of Al-doped ZnO. The measured conductance profile as a function of time was correlated to the expected growth regimes typical of an island growth mode, and the thickness dependence of resistivity was directly observed. Additional information about the growth conditions was obtained through conductance relaxation after single pulses, performed under different growth chamber atmospheres.

Book Oxide Semiconductors

Download or read book Oxide Semiconductors written by and published by Academic Press. This book was released on 2013-05-18 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the "Willardson and Beer" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry

Book Handbook of Transparent Conductors

Download or read book Handbook of Transparent Conductors written by David S. Ginley and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transparent conducting materials are key elements in a wide variety of current technologies including flat panel displays, photovoltaics, organic, low-e windows and electrochromics. The needs for new and improved materials is pressing, because the existing materials do not have the performance levels to meet the ever- increasing demand, and because some of the current materials used may not be viable in the future. In addition, the field of transparent conductors has gone through dramatic changes in the last 5-7 years with new materials being identified, new applications and new people in the field. “Handbook of Transparent Conductors” presents transparent conductors in a historical perspective, provides current applications as well as insights into the future of the devices. It is a comprehensive reference, and represents the most current resource on the subject.

Book Transparent Conductive Zinc Oxide

Download or read book Transparent Conductive Zinc Oxide written by Klaus Ellmer and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) belongs to the class of transparent conducting oxides that can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review.

Book Defects at Oxide Surfaces

Download or read book Defects at Oxide Surfaces written by Jacques Jupille and published by Springer. This book was released on 2015-02-09 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties have yet to be developed. The book gives guidance to tailor oxide surfaces by controlling the nature and concentration of defects. The importance of defects in the physics and chemistry of metal oxide surfaces is presented in this book together with the prominent role of oxides in common life. The book contains contributions from leaders in the field. It serves as a reference for experts and beginners in the field.

Book Advanced Calculations for Defects in Materials

Download or read book Advanced Calculations for Defects in Materials written by Audrius Alkauskas and published by John Wiley & Sons. This book was released on 2011-05-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.

Book Transparent Oxide Electronics

Download or read book Transparent Oxide Electronics written by Pedro Barquinha and published by John Wiley & Sons. This book was released on 2012-03-15 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at low-cost, disposable and lightweight devices for the next generation of ergonomic and functional discrete devices. Chapters cover: Properties and applications of n-type oxide semiconductors P-type conductors and semiconductors, including copper oxide and tin monoxide Low-temperature processed dielectrics n and p-type thin film transistors (TFTs) – structure, physics and brief history Paper electronics – Paper transistors, paper memories and paper batteries Applications of oxide TFTs – transparent circuits, active matrices for displays and biosensors Written by a team of renowned world experts, Transparent Oxide Electronics: From Materials to Devices gives an overview of the world of transparent electronics, and showcases groundbreaking work on paper transistors

Book First Principles Study on the Effects of Vacancies and Mg Doping on the Physical Properties of CuAlO2  AgAlO2  CuCrO2  and AgCrO2 Transparent Conductor Oxides

Download or read book First Principles Study on the Effects of Vacancies and Mg Doping on the Physical Properties of CuAlO2 AgAlO2 CuCrO2 and AgCrO2 Transparent Conductor Oxides written by James A. Shook and published by . This book was released on 2018 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for well understood, commercially available p-type transparent conducting oxides for incorporation into basic transparent semiconducting devices alongside their already well understood and available n-type counterparts for application in technologies such as solar cells and capacitive touchscreens motivates this first principles study on the effects of Cu and O vacancies and Mg doping on the intrinsically poor p-type character of CuAlO2, AgAlO2, CuCrO2, and AgCrO2. Density functional theory based calculations using the projector augmented-wave functions along with the generalized gradient approximation to the exchange and correlation energy as implemented by the Vienna Ab Initio Simulation Package are used to study the total crystal energy of the three known polymorphs of CuAlO2 and AgAlO2 in order to determine the most stable polymorph in the ground state. Additionally, three simple magnetic configurations are considered for CuCrO2 and AgCrO2 in the context of total energy of the ground state for the purpose of choosing a specific polymorph and magnetic configuration to be the framework within which the doped and defect systems will be studied. Different functional approaches to the exchange and correlation energies are also considered in order to accurately reproduce the structural properties and the band gap. The 2H delafossite polymorph is determined to be one of the most stable polymorphs and is the focus of this work as it is the least studied of the delafossites. The simple antiferromagnetic configuration is chosen to model magnetic effects in CuCrO2 and AgCrO2 due to it having one of the lowest ground state total energies and also containing the most semiconductor like behavior of the magnetic configurations considered. A 2x2x2 supercell scheme is employed to model 6.25% Cu and Ag vacancies, 3.13% O vacancies, and 6.25% Mg-doping replacing Al and Cr, from which structural properties, electronic properties, hole effective masses, and optical properties are obtained and compared to the pristine crystal in order to offer predictions on the effectiveness of the mentioned native defects and dopant on increasing the conductivity and maintaining transparency in all transparent conducting oxides studied in this work. Comparisons between the results obtained in this work and previous experimental and other theoretical results are made, when available. Many of the properties predicted here are immediately testable via experimentation.

Book Oxide Semiconductors  Volume 1633

Download or read book Oxide Semiconductors Volume 1633 written by Steve Durbin and published by Materials Research Society. This book was released on 2014-07-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symposium R, "Oxide Semiconductors" was held December 1-6 at the 2013 MRS Fall Meeting in Boston, Massachusetts. Oxide semiconductors are poised to take a more active role in modern electronics, particularly in the field of thin film transistors. While many advances have been made in terms of our understanding of fundamental optical and electronic characteristics, there remain many questions in terms of defects, doping, and optimal growth/synthesis conditions. This symposium proceedings volume represents recent advances in growth and characterization of a number of different oxide semiconductors, as well as device fabrication.

Book First principles Investigation of Defects and Interfaces in Rutile  Perovskite  and Fluorite structured Metal Oxides

Download or read book First principles Investigation of Defects and Interfaces in Rutile Perovskite and Fluorite structured Metal Oxides written by Maziar Behtash and published by . This book was released on 2018 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects and interfaces are ubiquitous in polycrystalline metal oxide materials, and their presence gives rise to a host of beneficial and harmful effects. In this thesis we focused on substitutional impurities, heterointerfaces, oxygen vacancies, and grain boundaries, with the goal of enhancing material properties, using first-principles density functional theory calculations. In the first project we studied the energetic and electronic properties of pentavalent-cation-doped SnO2 transparent conducting oxide (TCOs) materials. We found that P-doped SnO2 (PTO), a non-toxic low-cost material, compares favorably with well-known TCOs Sb-doped SnO2 (ATO) and Ta-doped SnO2 (TTO). In addition, we showed that the theoretical charge carrier density (ne) of PTO, ATO, and TTO is nearly identical, indicating that the order-of-magnitude experimental variations in n e for the latter two materials may instead arise from differences in experimental conditions during synthesis. In the second project we explored the possibility of enhancing the properties of the two-dimensional electron gas (2DEG) which forms at the interface of the LaAlO3/SrTiO3 (LAO/STO) heterostructure through n-type layer doping with transition metal cations. We found that Ta(Nb) doping at the interfacial Ti site is energetically favorable, and can significantly enhance the charge carrier density and magnetism of the interfacial 2DEG in LAO/STO. In addition, we found that Ta(Nb) doping at the interfacial Al site can improve 2DEG charge confinement to only two TiO2 atomic layers of the STO substrate. In the third project we examined polarization and the effect of externally-applied strain on 2DEG properties in LAO/STO. We found that the LAO film polarization (P LAO ) decreases with film thickness, and that there is a critical P LAO value above which 2DEG cannot form. We resolved the long-standing discrepancy between the experimental and theoretical 2DEG charge carrier density through the use of an appropriate slab model. In addition, we showed that [100] uniaxial tensile strain applied on the STO substrate can reduce P LAO and thereby enhance the charge carrier density, electron mobility, and interfacial charge concentration of the LAO/STO 2DEG. In the fourth project we studied termination stability and oxygen vacancy formation in a [sigma]5 [001] twist grain boundary (GB) structure of SrTiO3 (STO). We found that of the three possible GB terminations, only the SrO/SrO (S/S) and SrO/TiO2 (S/T) can form in the chemical potential range necessary to guarantee bulk STO stability, while the TiO2 /TiO2 (T/T) termination cannot form. We showed that oxygen vacancies tend to segregate adjacent to the GB layer in the S/S system, but at the GB layer in the S/T system. In addition, we demonstrated that oxygen vacancies form more easily in the S/T GB system than the S/S GB system, leaving the door open for possible GB engineering applications. In the final project we considered substitutional impurity segregation to [sigma]5 (310)/[001] tilt grain boundary structures of ZrO2 , HfO2 , and yttria-stabilized ZrO2 (YSZ). We discovered a fundamental difference in the characteristic segregation profiles of aliovalent and isovalent impurities which is explained by differences in the local electrostatic potential energy. We successfully generated and structurally-optimized a YSZ GB structure bearing high concentrations of yttrium dopants and oxygen vacancies. Finally, we found that Si, Mg, and Ca are strong segregants in YSZ while Al, Ti, and Y are not.

Book Metal Oxide Defects

Download or read book Metal Oxide Defects written by Vijay Kumar and published by Elsevier. This book was released on 2022-11-19 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Defects: Fundamentals, Design, Development and Applications provides a broad perspective on the development of advanced experimental techniques to study defects and their chemical activity and catalytic reactivity in various metal oxides. This book highlights advances in characterization and analytical techniques to achieve better understanding of a wide range of defects, most importantly, state-of-the-art methodologies for controlling defects. The book provides readers with pathways to apply basic principles and interpret the behavior of metal oxides. After reviewing characterization and analytical techniques, the book focuses on the relationship of defects to the properties and performance of metal oxides. Finally, there is a review of the methods to control defects and the applications of defect engineering for the design of metal oxides for applications in optoelectronics, energy, sensing, and more. This book is a key reference for materials scientists and engineers, chemists, and physicists. - Reviews advances in characterization and analytical techniques to understand the behavior of defects in metal oxide materials - Introduces defect engineering applied to the design of metal oxide materials with desirable properties - Discusses applications of defect engineering to enhance the performance of materials for a wide range of applications, with an emphasis on optoelectronics

Book The Foundations of Vacuum Coating Technology

Download or read book The Foundations of Vacuum Coating Technology written by Donald M. Mattox and published by William Andrew. This book was released on 2018-08-21 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Foundations of Vacuum Coating Technology, Second Edition, is a revised and expanded version of the first edition, which was published in 2003. The book reviews the histories of the various vacuum coating technologies and expands on the history of the enabling technologies of vacuum technology, plasma technology, power supplies, and low-pressure plasma-enhanced chemical vapor deposition. The melding of these technologies has resulted in new processes and products that have greatly expanded the application of vacuum coatings for use in our everyday lives. The book is unique in that it makes extensive reference to the patent literature (mostly US) and how it relates to the history of vacuum coating. The book includes a Historical Timeline of Vacuum Coating Technology and a Historical Timeline of Vacuum/Plasma Technology, as well as a Glossary of Terms used in the vacuum coating and surface engineering industries. - History and detailed descriptions of Vacuum Deposition Technologies - Review of Enabling Technologies and their importance to current applications - Extensively referenced text - Patents are referenced as part of the history - Historical Timelines for Vacuum Coating Technology and Vacuum/Plasma Technology - Glossary of Terms for vacuum coating

Book Springer Handbook of Inorganic Photochemistry

Download or read book Springer Handbook of Inorganic Photochemistry written by Detlef Bahnemann and published by Springer Nature. This book was released on 2022-06-25 with total page 1914 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.

Book Zinc Compounds   Advances in Research and Application  2013 Edition

Download or read book Zinc Compounds Advances in Research and Application 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-06-21 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc Compounds—Advances in Research and Application: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about ZZZAdditional Research in a concise format. The editors have built Zinc Compounds—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about ZZZAdditional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Zinc Compounds—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.