EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theoretical Extension and Innovative Applications of Reaction Engineering Approach to Modeling Drying and Other Transport Processes

Download or read book Theoretical Extension and Innovative Applications of Reaction Engineering Approach to Modeling Drying and Other Transport Processes written by Aditya Putranto and published by . This book was released on 2013 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drying is a water removal process involving simultaneous heat and mass transfer process. Usually, it is referred to a process involving vapor removal. Study of drying is important since it is an energy-intensive process because large amount of heat needs to be supplied for evaporating water. Drying also affects significantly the product quality of materials. Optimization exercises need to be carried out to maintain the highest possible product quality of the materials during drying as well as minimizing energy consumption. The optimization procedures often involve modeling. Hence, reliable drying model can assist in process design, process simulation and optimization. For process design, it can be used to explore new innovative designs of a dryer, to evaluate the performance of existing dryer and to assess its energy consumption. For maintaining product quality, a reliable drying model can be applied to explore new processes and to optimize the existing process to achieve high quality products. A reliable drying model should ideally be simple, accurate, able to capture the physics of drying process and require minimum sets of experiments to generate the drying parameters. The minimal number of laboratory trials required is a feature useful for industry. The reaction engineering approach (REA) was proposed by Professor X.D. Chen in 1996 and has been used successfully to model several drying processes mainly thin layer drying and drying of small particulates of food materials. The physics of the drying process is captured by the relative activation energy which represents the level of difficulty to 'extract' moisture during drying in addition to evaporating free water. Initially, it may be zero near the start of drying of high moisture product and keeps on increasing during drying as drying progresses. When the low equilibrium moisture content is reached, the relative activation energy becomes one. The relative activation energy of the same materials can be used to model other drying processes with the similar initial moisture content. The REA framework allows a very effective way to obtain the necessary parameters. Because of the efficiency of the REA framework established so far, it is worthwhile to develop further the REA in an innovative manner and to implement the REA to more complex scenarios. The REA, which was previously proposed in the lumped format, is now labeled as the lumped reaction engineering approach (L-REA) and more comprehensively, we have developed the spatial reaction engineering approach (S-REA) in the current work. In L-REA, the REA is used to model the global drying rate while in S-REA, the REA is applied to model the local evaporation rate and coupled with a system of equations of conservation to yield a spatial model. To expand the L-REA approach, it is implemented in this study to model convective infrared-heating drying, convective drying of several centimeters thick samples, intermittent drying under time-varying temperature, humidity and infrared-heating, baking, roasting and heat treatment of wood under linearly increased temperature. In all the cases of food and natural materials, appropriate shrinkage models are required. The S-REA is developed and applied here to model convective drying, intermittent drying and heat treatment of wood under constant heating rate, where spatial energy and mass balances are resolved. For modeling of the convective drying of other materials, the original formulation of the L-REA is implemented. Without any modification, the L-REA can model the convective drying of the mixture of polymer solutions accurately. For modeling the infrared-heating drying, a new definition of the equilibrium activation energy has to be introduced. For modeling of convective drying of several centimeters of thick sample using the L-REA, the approximation of spatial distribution of sample temperature is used. The surface temperature is also implemented in the mass and heat balances as well as the evaluation of saturated water vapor concentration. It is emphasized that the L-REA does not actually assume uniform moisture content inside the sample but the L-REA evaluates the average moisture content during drying. The results indicate that the L-REA models well the convective drying of non-food materials, infrared-heating drying and convective drying of several centimeters of thick sample. The L-REA is applied to model the intermittent drying of food and non-food materials under time-varying humidity, temperature and infrared-heating intensity. Surprisingly, for modeling the intermittent drying, no major modification of the original formulation of the REA is necessary. In order to incorporate the effect of time-varying humidity and temperature, the equilibrium activation energy is evaluated according to the corresponding humidity and temperature in each drying period. The relative activation energy generated from convective drying of materials under constant environmental conditions can be used to model the intermittent drying. The results indicate that the L-REA can model actually the intermittent drying of food and non-food materials under slow and rapid change of ambient humidity and temperature. For modeling the intermittent drying under time-varying infrared-heating intensity using the L-REA, two schemes of definition of equilibrium activation energy is used. The first scheme employs the relationship between the infrared-heating intensity in each stage and the final product temperature in each stage should the infrared heating be prolonged to equilibrium. The second scheme uses direct relationship between the infrared-heating intensity in each stage and equilibrium activation energy. Both definitions are combined with the relative activation energy, generated from convective drying run under constant environmental conditions to yield the activation energy. It has been shown that the L-REA can also model very well the intermittent drying under time-varying infrared-heating intensity. The L-REA is further implemented to model the simultaneous heat and mass transfer processes at high temperature namely baking of bread, roasting of barley and coffee and heat treatment of wood under constant heating rate. For modeling these processes, no modification of the original formulation of the REA is required. For modeling the heat treatment of wood under constant heating rate which is essentially a drying process under linearly increased gas temperature, the equilibrium activation energy is evaluated according to corresponding humidity and temperature during the process. The results indicate that the L-REA can model these processes well. The use of non-equilibrium multiphase drying model is suggested as the model can offer better understanding of drying process and it can be used to assess the suitability of equilibrium multiphase drying model. However, the model requires explicit formulation of the local evaporation rate. The REA is further implemented to model the local evaporation rate and coupled with a system of equations of conservation of heat and mass transfer to yield a spatial model called the spatial reaction engineering approach (S-REA), as a non-equilibrium multiphase drying model. The S-REA consists of the spatial mass balances of liquid water and water vapor as well as the heat balance in the conventional manner. In the mass balances of liquid water and water vapor, the REA is used as the depletion and source terms, respectively. The REA is also adopted as the local evaporation rate term in the heat balance. The relative activation energy, implemented in the L-REA and generated in one accurate drying run, is used to model the local evaporation rate for the same material but the average moisture content is now replaced by the local moisture content. In this study, the S-REA has been implemented to model the convective drying, intermittent drying and heat treatment of wood under constant heating rate. The accuracy of the S-REA to model these processes as well as the applicability of the REA to describe the local evaporation rate has been assessed. For modeling convective drying using the S-REA, using the approach mentioned above, it has been shown that the results of modeling match well with the experimental data. The S-REA is capable to model the spatial profiles of moisture content, concentration of water vapor and temperature accurately. Due to the application of the REA as the local evaporation rate, the profiles of local evaporation rate and concentration of water vapor can now be generated so that better insightful physics of drying can be gained. The S-REA has also been successfully applied to modeling of the intermittent drying and heat treatment of wood under linearly increased temperature. Based on the extensive modeling exercises carried out in this study, it can be concluded that the REA framework is very useful in characterizing various challenging drying and other simultaneous heat and mass transfer processes. The L-REA has been proven to be accurate and effective to model these processes with simplicity being a major advantage. The REA framework has also been shown to be able to model the local evaporation/condensation rate well. The S-REA is an effective non-equilibrium multiphase drying approach to provide better understanding of transport phenomena of drying and other simultaneous heat and mass transfer processes that involve water transformations. It is interesting to note that the L-REA parameters obtained in laboratory can also be used in S-REA simulations for the same material being dried. This presents an obvious practical advantage.

Book Modelling Drying Processes

Download or read book Modelling Drying Processes written by Xiao Dong Chen and published by Cambridge University Press. This book was released on 2013-05-23 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive summary of the state of the art and the ideas behind the reaction engineering approach (REA) to drying processes is an ideal resource for researchers, academics and industry practitioners. Starting with the formulation, modelling and applications of the lumped-REA, it goes on to detail the use of the REA to describe local evaporation and condensation, and its coupling with equations of conservation of heat and mass transfer, called the spatial-REA, to model non-equilibrium multiphase drying. Finally, it summarises other established drying models, discussing their features, limitations and comparisons with the REA. Application examples featured throughout help fine-tune the models and implement them for process design and the evaluation of existing drying processes and product quality during drying. Further uses of the principles of REA are demonstrated, including computational fluid dynamics-based modelling, and further expanded to model other simultaneous heat and mass transfer processes.

Book Modelling Drying Processes

Download or read book Modelling Drying Processes written by Xiao Dong Chen and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive summary of the state of the art and the ideas behind the reaction engineering approach (REA) to drying processes is an ideal resource for researchers, academics and industry practitioners. Starting with the formulation, modelling and applications of the lumped-REA, it goes on to detail the use of the REA to describe local evaporation and condensation, and its coupling with equations of conservation of heat and mass transfer, called the spatial-REA, to model non-equilibrium multiphase drying. Finally, it summarises other established drying models, discussing their features, limitations and comparisons with the REA. Application examples featured throughout help fine-tune the models and implement them for process design and the evaluation of existing drying processes and product quality during drying. Further uses of the principles of REA are demonstrated, including computational fluid dynamics-based modelling, and further expanded to model other simultaneous heat and mass transfer processes.

Book Modeling Drying Processes

Download or read book Modeling Drying Processes written by Xiao Dong Chen and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Food Science  Technology  and Engineering   4 Volume Set

Download or read book Handbook of Food Science Technology and Engineering 4 Volume Set written by Y. H. Hui and published by CRC Press. This book was released on 2005-12-19 with total page 3632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in food science, technology, and engineering are occurring at such a rapid rate that obtaining current, detailed information is challenging at best. While almost everyone engaged in these disciplines has accumulated a vast variety of data over time, an organized, comprehensive resource containing this data would be invaluable to have. The

Book Thermodynamic Approaches in Engineering Systems

Download or read book Thermodynamic Approaches in Engineering Systems written by Stanislaw Sieniutycz and published by Elsevier. This book was released on 2016-05-20 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research. Presents clearly structured chapters beginning with an introduction, elaboration of the process, and results summarized in a conclusion Written by a first-class expert in the field of advanced methods in thermodynamics Provides a synthesis of recent thermodynamic developments in practical systems Presents very elaborate literature discussions from the past fifty years

Book The World of Wiley

Download or read book The World of Wiley written by and published by . This book was released on 1958 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Aided Modeling of Reactive Systems

Download or read book Computer Aided Modeling of Reactive Systems written by Warren E. Stewart and published by Wiley-AIChE. This book was released on 2008-03-17 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to apply modeling and parameter estimation tools and strategies to chemicalprocesses using your personal computer This book introduces readers to powerful parameter estimation and computational methods for modeling complex chemical reactions and reaction processes. It presents useful mathematical models, numerical methods for solving them, and statistical methods for testing and discriminating candidate models with experimental data. Topics covered include: Chemical reaction models Chemical reactor models Probability and statistics Bayesian estimation Process modeling with single-response data Process modeling with multi-response data Computer software (Athena Visual Studio) is available via a related Web site http://www.athenavisual.com enabling readers to carry out parameter estimation based on their data and to carry out process modeling using these parameters. As an aid to the reader, an appendix of example problems and solutions is provided. Computer-Aided Modeling of Reactive Systems is an ideal supplemental text for advanced undergraduates and graduate students in chemical engineering courses, while it also serves as a valuable resource for practitioners in industry who want to keep up to date on the most current tools and strategies available.

Book Theoretical Chemical Engineering Abstracts

Download or read book Theoretical Chemical Engineering Abstracts written by and published by . This book was released on 1986 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Engineering Design

Download or read book Chemical Engineering Design written by Gavin Towler and published by Elsevier. This book was released on 2012-01-25 with total page 1321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. New discussion of conceptual plant design, flowsheet development and revamp design Significantly increased coverage of capital cost estimation, process costing and economics New chapters on equipment selection, reactor design and solids handling processes New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography Increased coverage of batch processing, food, pharmaceutical and biological processes All equipment chapters in Part II revised and updated with current information Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards Additional worked examples and homework problems The most complete and up to date coverage of equipment selection 108 realistic commercial design projects from diverse industries A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors

Book Process Intensification

Download or read book Process Intensification written by David Reay and published by Butterworth-Heinemann. This book was released on 2013-06-05 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology

Book Extended Abstracts

Download or read book Extended Abstracts written by Electrochemical Society and published by . This book was released on 1991 with total page 1304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Electrochemistry

Download or read book Handbook of Electrochemistry written by Cynthia G. Zoski and published by Elsevier. This book was released on 2007-02-07 with total page 935 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1975-07 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Summaries of Projects Completed

Download or read book Summaries of Projects Completed written by National Science Foundation (U.S.) and published by . This book was released on with total page 1108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Fiscal Year 1986 Department of Energy Authorization  basic Research Programs

Download or read book Fiscal Year 1986 Department of Energy Authorization basic Research Programs written by United States. Congress. House. Committee on Science and Technology. Subcommittee on Energy Development and Applications and published by . This book was released on 1985 with total page 1160 pages. Available in PDF, EPUB and Kindle. Book excerpt: