EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Classical Theory of Arithmetic Functions

Download or read book Classical Theory of Arithmetic Functions written by R Sivaramakrishnan and published by Routledge. This book was released on 2018-10-03 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati

Book Arithmetic Functions and Integer Products

Download or read book Arithmetic Functions and Integer Products written by P.D.T.A. Elliott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Book Arithmetical Functions

    Book Details:
  • Author : Komaravolu Chandrasekharan
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642500269
  • Pages : 244 pages

Download or read book Arithmetical Functions written by Komaravolu Chandrasekharan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the manuscript and correcting the proofs. K. Chandrasekharan July 1970 Contents Chapter I The prime number theorem and Selberg's method § 1. Selberg's fonnula . . . . . . 1 § 2. A variant of Selberg's formula 6 12 § 3. Wirsing's inequality . . . . . 17 § 4. The prime number theorem. .

Book The Theory of Functions of Real Variables

Download or read book The Theory of Functions of Real Variables written by Lawrence M Graves and published by Courier Corporation. This book was released on 2012-01-27 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.

Book Introduction to the Arithmetic Theory of Automorphic Functions

Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Book An Introduction to the Theory of Numbers

Download or read book An Introduction to the Theory of Numbers written by Leo Moser and published by The Trillia Group. This book was released on 2004 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description

Book The Theory of Arithmetic Functions

Download or read book The Theory of Arithmetic Functions written by Anthony A. Gioia and published by Springer. This book was released on 2006-11-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Number Theory in Function Fields

Download or read book Number Theory in Function Fields written by Michael Rosen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.

Book Various Arithmetic Functions and their Applications

Download or read book Various Arithmetic Functions and their Applications written by Octavian Cira and published by Infinite Study. This book was released on 2016 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factorials, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, Romania). This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equations", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to propose new areas of study in number theory, and Octavian Cira - with his algorithmic thinking and knowledge of Mathcad.

Book Classical Theory of Arithmetic Functions

Download or read book Classical Theory of Arithmetic Functions written by R Sivaramakrishnan and published by Routledge. This book was released on 2018-10-03 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the classical theory of number-theoretic functions emphasizing algebraic and multiplicative techniques. It contains many structure theorems basic to the study of arithmetic functions, including several previously unpublished proofs. The author is head of the Dept. of Mathemati

Book The Book of Prime Number Records

Download or read book The Book of Prime Number Records written by Paulo Ribenboim and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.

Book Number Theory

    Book Details:
  • Author : Helmut Koch
  • Publisher : American Mathematical Soc.
  • Release : 2000
  • ISBN : 9780821820544
  • Pages : 390 pages

Download or read book Number Theory written by Helmut Koch and published by American Mathematical Soc.. This book was released on 2000 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Book Number Theory and Geometry  An Introduction to Arithmetic Geometry

Download or read book Number Theory and Geometry An Introduction to Arithmetic Geometry written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2019-03-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Book Arithmetic Functions

    Book Details:
  • Author : József Sándor
  • Publisher : Nova Science Publishers
  • Release : 2021
  • ISBN : 9781536196771
  • Pages : 253 pages

Download or read book Arithmetic Functions written by József Sándor and published by Nova Science Publishers. This book was released on 2021 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This monograph is devoted to arithmetic functions, an area of number theory. Arithmetic functions are very important in many parts of theoretical and applied sciences, and many mathematicians have devoted great interest in this field. One of the interesting features of this book is the introduction and study of certain new arithmetic functions that have been considered by the authors separately or together, and their importance is shown in many connections with the classical arithmetic functions or in their applications to other problems"--

Book Basic Structures of Function Field Arithmetic

Download or read book Basic Structures of Function Field Arithmetic written by David Goss and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062

Book Modular Functions and Dirichlet Series in Number Theory

Download or read book Modular Functions and Dirichlet Series in Number Theory written by Tom M. Apostol and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.

Book Arithmetic Tales

    Book Details:
  • Author : Olivier Bordellès
  • Publisher : Springer Science & Business Media
  • Release : 2012-05-31
  • ISBN : 1447140966
  • Pages : 569 pages

Download or read book Arithmetic Tales written by Olivier Bordellès and published by Springer Science & Business Media. This book was released on 2012-05-31 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory was once famously labeled the queen of mathematics by Gauss. The multiplicative structure of the integers in particular deals with many fascinating problems some of which are easy to understand but very difficult to solve. In the past, a variety of very different techniques has been applied to further its understanding. Classical methods in analytic theory such as Mertens’ theorem and Chebyshev’s inequalities and the celebrated Prime Number Theorem give estimates for the distribution of prime numbers. Later on, multiplicative structure of integers leads to multiplicative arithmetical functions for which there are many important examples in number theory. Their theory involves the Dirichlet convolution product which arises with the inclusion of several summation techniques and a survey of classical results such as Hall and Tenenbaum’s theorem and the Möbius Inversion Formula. Another topic is the counting integer points close to smooth curves and its relation to the distribution of squarefree numbers, which is rarely covered in existing texts. Final chapters focus on exponential sums and algebraic number fields. A number of exercises at varying levels are also included. Topics in Multiplicative Number Theory introduces offers a comprehensive introduction into these topics with an emphasis on analytic number theory. Since it requires very little technical expertise it will appeal to a wide target group including upper level undergraduates, doctoral and masters level students.