EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Final Technical Report  Cloud and Radiation Testbed  CART  Raman Lidar Measurement of Atmospheric Aerosols for the Atmospheric Radiation Measurement  ARM  Program

Download or read book Final Technical Report Cloud and Radiation Testbed CART Raman Lidar Measurement of Atmospheric Aerosols for the Atmospheric Radiation Measurement ARM Program written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertical profiles of aerosol extinction are required for determination of the effects of aerosols on the clear-sky radiative flux. Since recent studies have demonstrated the inability to compute these profiles on surface aerosol measurements alone, vertical profiles of aerosol optical properties must be acquired to compute aerosol radiative effects throughout the entire atmospheric column. Following the recommendation of the ARM Aerosol Working Group, the investigator developed, evaluated, and implemented algorithms for the CART Raman Lidar to provide profiles of aerosol extinction and backscattering. By virtue of its ability to measure vertical profiles of both aerosol extinction and water vapor simultaneously in the same scattering volume, we used the resulting profiles from the CART Raman Lidar to investigate the impact of water vapor and relative humidity on aerosol extinction throughout the column on a continuous and routine basis. The investigator used these the CART Raman Lidar aerosol extinction and backscattering profiles to evaluate the vertical variability of aerosol extinction and the extinction/backscatter ratio over the ARM SGP site.

Book Turn key Raman Lidar for Profiling Atmospheric Water Vapor  Clouds  and Aerosols at the US Southern Great Plains Climate Study Site

Download or read book Turn key Raman Lidar for Profiling Atmospheric Water Vapor Clouds and Aerosols at the US Southern Great Plains Climate Study Site written by and published by . This book was released on 1997 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Book Arr  t  s et remontrances du parlement de Bordeaux au roi  sur ce qui a suivi la r  clamation de cette compagnie contre les lettres patentes accord  es en 1752  au bureau des finances   21 juillet 1756

Download or read book Arr t s et remontrances du parlement de Bordeaux au roi sur ce qui a suivi la r clamation de cette compagnie contre les lettres patentes accord es en 1752 au bureau des finances 21 juillet 1756 written by and published by . This book was released on 1756 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

Download or read book Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of 'cross-talk' between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a "first principles" calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar's laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles of cloud droplet size together with the aerosol extinction observed by the same lidar are used to investigate the aerosol indirect effect in several case studies in August 2006. Russo F. "An investigation of Raman lidar measurements and their application to the study of the aerosol indirect effect", PhD Thesis (2007). Russo F., D.N. Whiteman, D.D. Turner, B.B. Demoz, R.M. Hoff, I. Veselovskii, "Measurements of the Aerosol Indirect Effect using a Raman lidar. Part 1: cloud liquid water measurements", manuscript in preparation. Russo F., D.N. Whiteman, D.D. Turner, B.B. Demoz, R.M. Hoff, I. Veselovskii, "Measurements of the Aerosol Indirect Effect using a Raman lidar. Part 2: the calculation of IE", manuscript in preparation.

Book Comparative Aerosol Studies Based on Multi wavelength Raman LIDAR at Ny   lesund  Spitsbergen

Download or read book Comparative Aerosol Studies Based on Multi wavelength Raman LIDAR at Ny lesund Spitsbergen written by Anne Hoffmann and published by . This book was released on 2011 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Arctic is a particularly sensitive area with respect to climate change due to the high surface albedo of snow and ice and the extreme radiative conditions. Clouds and aerosols as parts of the Arctic atmosphere play an important role in the radiation budget, which is, as yet, poorly quantified and understood. The LIDAR (Light Detection And Ranging) measurements presented in this PhD thesis contribute with continuous altitude resolved aerosol profiles to the understanding of occurrence and characteristics of aerosol layers above Ny-Ålesund, Spitsbergen. The attention was turned to the analysis of periods with high aerosol load. As the Arctic spring troposphere exhibits maximum aerosol optical depths (AODs) each year, March and April of both the years 2007 and 2009 were analyzed. Furthermore, stratospheric aerosol layers of volcanic origin were analyzed for several months, subsequently to the eruptions of the Kasatochi and Sarychev volcanoes in summer 2008 and 2009, respectively. The Koldewey Aerosol Raman LIDAR (KARL) is an instrument for the active remote sensing of atmospheric parameters using pulsed laser radiation. It is operated at the AWIPEV research base and was fundamentally upgraded within the framework of this PhD project. It is now equipped with a new telescope mirror and new detection optics, which facilitate atmospheric profiling from 450m above sea level up to the mid-stratosphere. KARL provides highly resolved profiles of the scattering characteristics of aerosol and cloud particles (backscattering, extinction and depolarization) as well as water vapor profiles within the lower troposphere. Combination of KARL data with data from other instruments on site, namely radiosondes, sun photometer, Micro Pulse LIDAR, and tethersonde system, resulted in a comprehensive data set of scattering phenomena in the Arctic atmosphere. The two spring periods March and April 2007 and 2009 were at first analyzed based on meteorological parameters, like local temperature and relative humidity profiles as well as large scale pressure patterns and air mass origin regions. Here, it was not possible to find a clear correlation between enhanced AOD and air mass origin. However, in a comparison of two cloud free periods in March 2007 and April 2009, large AOD values in 2009 coincided with air mass transport through the central Arctic. This suggests the occurrence of aerosol transformation processes during the aerosol transport to Ny-Ålesund. Measurements on 4 April 2009 revealed maximum AOD values of up to 0.12 and aerosol size distributions changing with altitude. This and other performed case studies suggest the differentiation between three aerosol event types and their origin: Vertically limited aerosol layers in dry air, highly variable hygroscopic boundary layer aerosols and enhanced aerosol load across wide portions of the troposphere. For the spring period 2007, the available KARL data were statistically analyzed using a characterization scheme, which is based on optical characteristics of the scattering particles. The scheme was validated using several case studies. Volcanic eruptions in the northern hemisphere in August 2008 and June 2009 arose the opportunity to analyze volcanic aerosol layers within the stratosphere. The rate of stratospheric AOD change was similar within both years with maximum values above 0.1 about three to five weeks after the respective eruption. In both years, the stratospheric AOD persisted at higher rates than usual until the measurements were stopped in late September due to technical reasons. In 2008, up to three aerosol layers were detected, the layer structure in 2009 was characterized by up to six distinct and thin layers which smeared out to one broad layer after about two months. The lowermost aerosol layer was continuously detected at the tropopause altitude. Three case studies were performed, all revealed rather large indices of refraction of m = (1.531.55) - 0.02i, suggesting the presence of an absorbing carbonaceous component. The particle radius, derived with inversion calculations, was also similar in both years with values ranging from 0.16 to 0.19 æm. However, in 2009, a second mode in the size distribution was detected at about 0.5 æm. The long term measurements with the Koldewey Aerosol Raman LIDAR in Ny-Ålesund provide the opportunity to study Arctic aerosols in the troposphere and the stratosphere not only in case studies but on longer time scales. In this PhD thesis, both, tropospheric aerosols in the Arctic spring and stratospheric aerosols following volcanic eruptions have been described qualitatively and quantitatively. Case studies and comparative studies with data of other instruments on site allowed for the analysis of microphysical aerosol characteristics and their temporal evolution.

Book Advances in Atmospheric Remote Sensing with Lidar

Download or read book Advances in Atmospheric Remote Sensing with Lidar written by Albert Ansmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lidar or laser radar, the depth-resolved remote measurement of atmospheric parameters with optical means, has become an important tool in the field of atmospheric and environmental remote sensing. In this volume the latest progress in the development of Lidar methods, experiments, and applications is described. The content is based on selected and thoroughly refereed papers presented at the 18th International Laser Radar Conference, Berlin, 22 - 26 July 1996. The book is divided into six parts which cover the topics of tropospheric aerosols and clouds, Lidar in space, wind, water vapor, troposheric trace gases and plumes, and stratospheric and mesospheric profiling. As a supplement to fundamental LIDAR textbooks this volume may serve as a guide through the blossoming field of modern Lidar techniques.

Book Raman lidar measurement of the atmospheric aerosol extinction profile

Download or read book Raman lidar measurement of the atmospheric aerosol extinction profile written by Maren Riebesell and published by . This book was released on 1991 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lidar

    Book Details:
  • Author : Claus Weitkamp
  • Publisher : Springer Science & Business Media
  • Release : 2005-07-15
  • ISBN : 0387400753
  • Pages : 467 pages

Download or read book Lidar written by Claus Weitkamp and published by Springer Science & Business Media. This book was released on 2005-07-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection. Its broad cross-disciplinary scope should appeal to both the experienced scientist and the novice in the field. The Foreword is by one of the early pioneers in the area, Herbert Walther.

Book Final Technical Report for Grant   DE FG02 06ER64169

Download or read book Final Technical Report for Grant DE FG02 06ER64169 written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Atmospheric Radiation Measurement (ARM) program is funding this project to improve the methodology of ground-based remote sensing of the vertical distribution of aerosol and cloud optical properties, and their effect on atmospheric radiative transfer. Remotely-sensed and in situ observed aerosol, cloud physical, and optical properties collected during the May 2003 Aerosol Intensive Operational Period (AIOP) and the Aerosol Lidar Validation Experiment (ALIVE), conducted from September 11-22, 2005, are the basis for the investigation. We have used ground-based lidar, airborne sunphotometer and in situ measurements and other data to evaluate the vertical profile of aerosol properties. We have been pursuing research in the following three areas: (1) Aerosol Best Estimate Product--Sensitivity Study: ARM is developing an Aerosol Best Estimate (ABE) Value Added Product (VAP) to provide aerosol optical properties at all times and heights above its sites. The ABE is used as input for the Broadband Heating Rate Profile (BBHRP) VAP, whose output will be used to evaluate the radiative treatment of aerosols and clouds in climate models. ARM has a need to assess how much detail is required for the ABE and if a useful ABE can be derived for the tropical and arctic climate research facilities (CRFs) where only limited aerosol information in the vertical is available. We have been determining the sensitivity of BBHRP to the vertical profile of aerosol optical properties used in ABE. (2) Vertically Resolved Aerosol and Cloud Radiative Properties over the Southern Great Plains (SGP): The AIOP delivered an unprecedented airborne radiometric and in situ data set related to aerosols and clouds. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS's) Twin Otter aircraft carried solar pointing, up- and down-looking radiometers (spectral and broadband, visible, and infrared) with the uplooking radiometers mounted on a stabilized platform. We are performing an integrated analysis of the largely unexploited radiometric data set to provide observation-based quantification of the effect of aerosols and clouds on the radiation field. We will link aerosol and cloud properties measured in situ with the observed radiative fluxes using radiative transfer models. This over-determined dataset will provide validation of the BBHRP VAP. (3) Integrated Analysis of Data from the Aerosol Lidar Validation Experiment: The ABE VAP relies on continuous lidar observations to provide the vertical distribution of the aerosols above the ARM sites. The goal of ALIVE, conducted in September 2005, was the validation of the aerosol extinction profiles obtained from the SGP Raman lidar, which has been recently refurbished/updated, and the Micro Pulse Lidar, for which a new algorithm to retrieve aerosol profiles has recently been developed, using the National Aeronautics and Space Administration (NASA) Ames Airborne Tracking 14 channel Sun photometer. We are performing and publishing the integrated analysis of the ALIVE data set.

Book Atmospheric Temperature Measurements Using Raman Lidar

Download or read book Atmospheric Temperature Measurements Using Raman Lidar written by Jack A. Salzman and published by . This book was released on 1974 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measurement of atmospheric aerosol extinction profiles with a Raman lidar

Download or read book Measurement of atmospheric aerosol extinction profiles with a Raman lidar written by Albert Ansmann and published by . This book was released on 1990 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Raman Lidar Measurements During the International Hzo Project  1

Download or read book Raman Lidar Measurements During the International Hzo Project 1 written by D. N. Whiteman and published by BiblioGov. This book was released on 2013-08 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

Book Lidar Technologies  Techniques  and Measurements for Atmospheric Remote Sensing

Download or read book Lidar Technologies Techniques and Measurements for Atmospheric Remote Sensing written by Upendra N. Singh and published by SPIE-International Society for Optical Engineering. This book was released on 2005 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Book Toward 1  Photometry

Download or read book Toward 1 Photometry written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atmospheric Measurements Using a Scanning  Solar blind Raman Lidar

Download or read book Atmospheric Measurements Using a Scanning Solar blind Raman Lidar written by and published by . This book was released on 1991 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of the water cycle by Lidar has many applications. Because micro-scale structures can be identified by their water content, the technique offers new opportunities to visualize and study the phenomena. There are applications to many practical problems in agricultural and water management as well as at waste storage sites. Conventional point sensors are limited and are inappropriate for use in complex terrain or varied vegetation and cannot be extrapolated over even modest ranges. To this end, techniques must be developed to measure the variables associated with evapotranspirative processes over large areas and varied surface conditions. A scanning water-Raman Lidar is an ideal tool for this task in that it can measure the water vapor concentration rapidly with high spatial resolution without influencing the measurements by the presence of the sensor. 3 refs., 5 figs., 1 tab.