Download or read book The Procrustes Problem for Orthogonal Stiefel Matrices written by Adam Bojanczyk and published by . This book was released on 1996 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Matrix Computations written by Gene Howard Golub and published by JHU Press. This book was released on 2013-02-15 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
Download or read book SIAM Journal on Scientific Computing written by and published by . This book was released on 2004 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Convex Optimization Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.
Download or read book Pattern Recognition written by Carl Edward Rasmussen and published by Springer. This book was released on 2004-08-10 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 26th Symposium of the German Association for Pattern Recognition, DAGM 2004, held in Tbingen, Germany in August/September 2004. The 22 revised papers and 48 revised poster papers presented were carefully reviewed and selected from 146 submissions. The papers are organized in topical sections on learning, Bayesian approaches, vision and faces, vision and motion, biologically motivated approaches, segmentation, object recognition, and object recognition and synthesis.
Download or read book Optimization Algorithms on Matrix Manifolds written by P.-A. Absil and published by Princeton University Press. This book was released on 2009-04-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Download or read book Multivariate Data Analysis on Matrix Manifolds written by Nickolay Trendafilov and published by Springer Nature. This book was released on 2021-09-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number of exercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data mining and data science, as well as theoretical computer science, machine learning and optimization. It is assumed that the readers have some familiarity with MDA and some experience with matrix analysis, computing, and optimization.
Download or read book Pattern Recognition written by Jesús Ariel Carrasco-Ochoa and published by Springer. This book was released on 2017-05-31 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th Mexican Conference on Pattern Recognition, MCPR 2017, held in Huatulco, Mexico, in June 2017. The 29 revised full papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on pattern recognition and artificial intelligence techniques, image processing and analysis, robotics and remote sensing, natural language processing and recognition, applications of pattern recognition.
Download or read book Symmetry Nonlinear Bifurcation Analysis and Parallel Computation written by James Christopher Wohlever and published by . This book was released on 1996 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Pattern Recognition written by DAGM (Organization). Symposium and published by . This book was released on 2004 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Algebra for Data Science Machine Learning and Signal Processing written by Jeffrey A. Fessler and published by Cambridge University Press. This book was released on 2024-04-30 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master matrix methods via engaging data-driven applications, aided by classroom-tested quizzes, homework exercises and online Julia demos.
Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Science Technology Index written by and published by . This book was released on 2000 with total page 1688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Soft Computing written by Lourdes Martínez-Villaseñor and published by Springer Nature. This book was released on 2019-10-26 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the proceedings of the 18th Mexican Conference on Artificial Intelligence, MICAI 2019, held in Xalapa, Mexico, in October/November 2019. The 59 full papers presented in this volume were carefully reviewed and selected from 148 submissions. They cover topics such as: machine learning; optimization and planning; fuzzy systems, reasoning and intelligent applications; and vision and robotics.
Download or read book Matrix Computations written by Gene H. Golub and published by JHU Press. This book was released on 1996-10-15 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
Download or read book Orientations and Rotations written by Adam Morawiec and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.
Download or read book Procrustes Problems written by John C Gower and published by Oxford University Press, USA. This book was released on 2004-01-22 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Procrustean methods are used to transform one set of data to represent another set of data as closely as possible. The name derives from the Greek myth where Procrustes invited passers-by in for a pleasant meal and a night's rest on a magical bed that would exactly fit any guest. He then either stretched the guest on the rack or cut off their legs to make them fit perfectly into the bed. Theseus turned the tables on Procrustes, fatally adjusting him to fit his own bed. This text, the first monograph on Procrustes methods, unifies several strands in the literature and contains much new material. It focuses on matching two or more configurations by using orthogonal, projection and oblique axes transformations. Group-average summaries play an important part and links with other group-average methods are discussed. This is the latest in the well-established and authoritative Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. Each title has an original slant even if the material included is not specifically original. The authors are leading researchers and the topics covered will be of interest to all professional statisticians, whether they be in industry, government department or research institute. Other books in the series include 23. W.J.Krzanowski: Principles of multivariate analysis: a user's perspective updated edition 24. J.Durbin and S.J.Koopman: Time series analysis by State Space Models 25. Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e 26. J.K. Lindsey: Nonlinear Models in Medical Statistics 27. Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems 28. Margaret S. Pepe: The Statistical Evaluation of Medical Tests for Classification and Prediction 29. Christopher G. Small and Jinfang Wang: Numerical Methods for Nonlinear Estimating Equations