Download or read book The Millennium Prize Problems written by James Carlson and published by American Mathematical Society, Clay Mathematics Institute. This book was released on 2023-09-14 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.
Download or read book The Millennium Problems written by Keith J. Devlin and published by Granta Books. This book was released on 2005 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2000, the Clay Foundation of Cambridge, Massachusetts, announced a historic competition: Whoever could solve any of seven extraordinarily difficult mathematical problems, and have the solution acknowledged as correct by the experts, would receive $1million in prize money. They encompass many of the most fascinating areas of pure and applied mathematics, from topology and number theory to particle physics, cryptography, computing and even aircraft design. Keith Devlin describes here what the seven problems are, how they came about, and what they mean for mathematics and science. In the hands of Devlin, each Millennium Problem becomes a fascinating window onto the deepest questions in the field.
Download or read book The Poincare Conjecture written by Donal O'Shea and published by Bloomsbury Publishing USA. This book was released on 2009-05-26 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
Download or read book Prime Obsession written by John Derbyshire and published by Joseph Henry Press. This book was released on 2003-04-15 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Download or read book The Great Mathematical Problems written by Ian Stewart and published by Profile Books. This book was released on 2013-03-07 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are some mathematical problems whose significance goes beyond the ordinary - like Fermat's Last Theorem or Goldbach's Conjecture - they are the enigmas which define mathematics. The Great Mathematical Problems explains why these problems exist, why they matter, what drives mathematicians to incredible lengths to solve them and where they stand in the context of mathematics and science as a whole. It contains solved problems - like the Poincaré Conjecture, cracked by the eccentric genius Grigori Perelman, who refused academic honours and a million-dollar prize for his work, and ones which, like the Riemann Hypothesis, remain baffling after centuries. Stewart is the guide to this mysterious and exciting world, showing how modern mathematicians constantly rise to the challenges set by their predecessors, as the great mathematical problems of the past succumb to the new techniques and ideas of the present.
Download or read book Poincare s Prize written by George G. Szpiro and published by Penguin. This book was released on 2008-07-29 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amazing story of one of the greatest math problems of all time and the reclusive genius who solved it In the tradition of Fermat’s Enigma and Prime Obsession, George Szpiro brings to life the giants of mathematics who struggled to prove a theorem for a century and the mysterious man from St. Petersburg, Grigory Perelman, who fi nally accomplished the impossible. In 1904 Henri Poincaré developed the Poincaré Conjecture, an attempt to understand higher-dimensional space and possibly the shape of the universe. The problem was he couldn’t prove it. A century later it was named a Millennium Prize problem, one of the seven hardest problems we can imagine. Now this holy grail of mathematics has been found. Accessibly interweaving history and math, Szpiro captures the passion, frustration, and excitement of the hunt, and provides a fascinating portrait of a contemporary noble-genius.
Download or read book Ricci Flow and the Poincare Conjecture written by John W. Morgan and published by American Mathematical Soc.. This book was released on 2007 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Download or read book What s Happening in the Mathematical Sciences written by Barry Cipra and published by American Mathematical Soc.. This book was released on with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
Download or read book The Number Mysteries written by Marcus du Sautoy and published by St. Martin's Press. This book was released on 2011-05-24 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every time we download music, take a flight across the Atlantic or talk on our cell phones, we are relying on great mathematical inventions. In The Number Mysteries, one of our generation's foremost mathematicians Marcus du Sautoy offers a playful and accessible examination of numbers and how, despite efforts of the greatest minds, the most fundamental puzzles of nature remain unsolved. Du Sautoy tells about the quest to predict the future—from the flight of asteroids to an impending storm, from bending a ball like Beckham to forecasting population growth. He brings to life the beauty behind five mathematical puzzles that have contributed to our understanding of the world around us and have helped develop the technology to cope with it. With loads of games to play and puzzles to solve, this is a math book for everyone.
Download or read book Visual Complex Analysis written by Tristan Needham and published by Oxford University Press. This book was released on 1997 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Download or read book Stable Stems written by Daniel C. Isaksen and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over C through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications. In addition to finding all Adams differentials, the author also resolves all hidden extensions by 2, η, and ν through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences. The author also computes the motivic stable homotopy groups of the cofiber of the motivic element τ. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of τ are the same as the E2-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.
Download or read book Invisible Geniuses Could the Knowledge Frontier Advance Faster written by Ruchir Agarwal and published by International Monetary Fund. This book was released on 2018-12-07 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advancement of the knowledge frontier is crucial for technological innovation and human progress. Using novel data from the setting of mathematics, this paper establishes two results. First, we document that individuals who demonstrate exceptional talent in their teenage years have an irreplaceable ability to create new ideas over their lifetime, suggesting that talent is a central ingredient in the production of knowledge. Second, such talented individuals born in low- or middle-income countries are systematically less likely to become knowledge producers. Our findings suggest that policies to encourage exceptionally-talented youth to pursue scientific careers—especially those from lower income countries—could accelerate the advancement of the knowledge frontier.
Download or read book Elliptic Tales written by Avner Ash and published by Princeton University Press. This book was released on 2012 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.
Download or read book Introduction to Cosmology written by Jayant V. Narlikar and published by Cambridge University Press. This book was released on 1993-03-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook describes modern cosmology at a level suitable for advanced undergraduates who are familiar with mathematical methods and basic theoretical physics. An introductory survey of the large scale structure of the universe is followed by an outline of general relativity. This is then used to construct the standard models of the universe. The very early and early stages of the Big Bang are described, and this includes primordial nucleosynthesis, grand unified theories, primordial black holes, and the era of quantum cosmology. The problem of the formation of structure in the universe is then addressed. This textbook concludes with brief outlines of alternative cosmologies. It includes 400 problems for students to solve, and is accompanied by numerous worked examples.
Download or read book The Golden Ticket written by Lance Fortnow and published by Princeton University Press. This book was released on 2017-02-28 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The computer science problem whose solution could transform life as we know it The P-NP problem is the most important open problem in computer science, if not all of mathematics. Simply stated, it asks whether every problem whose solution can be quickly checked by computer can also be quickly solved by computer. The Golden Ticket provides a nontechnical introduction to P-NP, its rich history, and its algorithmic implications for everything we do with computers and beyond. Lance Fortnow traces the history and development of P-NP, giving examples from a variety of disciplines, including economics, physics, and biology. He explores problems that capture the full difficulty of the P-NP dilemma, from discovering the shortest route through all the rides at Disney World to finding large groups of friends on Facebook. The Golden Ticket explores what we truly can and cannot achieve computationally, describing the benefits and unexpected challenges of this compelling problem.
Download or read book The Essence of Mathematics Through Elementary Problems written by Alexandre Borovik and published by . This book was released on 2019-06-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Unsolved Problems in Mathematical Systems and Control Theory written by Vincent D. Blondel and published by Princeton University Press. This book was released on 2009-04-11 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.