Download or read book The Geometry of Geodesics written by Herbert Busemann and published by Courier Corporation. This book was released on 2012-07-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Download or read book The Geometry of Kerr Black Holes written by Barrett O'Neill and published by Courier Corporation. This book was released on 2014-01-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students of mathematics as well as for physicists, this unique monograph and self-contained treatment constitutes an introduction to modern techniques in differential geometry. 1995 edition.
Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.
Download or read book Geometry of Geodesics and Related Topics written by Katsuhiro Shiohama and published by Elsevier Science & Technology. This book was released on 1984 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume in the Japanese symposia series surveys recent advances in five areas of Geometry, namely Closed geodesics, Geodesic flows, Finiteness and uniqueness theorems for compact Riemannian manifolds, Hadamard manifolds, and Topology of complete noncompact manifolds.
Download or read book A Tour of Subriemannian Geometries Their Geodesics and Applications written by Richard Montgomery and published by American Mathematical Soc.. This book was released on 2002 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subriemannian geometries can be viewed as limits of Riemannian geometries. They arise naturally in many areas of pure (algebra, geometry, analysis) and applied (mechanics, control theory, mathematical physics) mathematics, as well as in applications (e.g., robotics). This book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book are an elementary exposition of Gromov's idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants of distributions. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry. The reader is assumed to have an introductory knowledge of differential geometry. This book that also has a chapter devoted to open problems can serve as a good introduction to this new, exciting area of mathematics.
Download or read book Geodesic Flows written by Gabriel P. Paternain and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.
Download or read book Manifolds all of whose Geodesics are Closed written by A. L. Besse and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: {laquo}Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: {laquo}Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ...
Download or read book Differential Geometry and Its Applications written by John Oprea and published by MAA. This book was released on 2007-09-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Download or read book Divided Spheres written by Edward S. Popko and published by CRC Press. This book was released on 2021-08-19 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the previous edition [. . .] Dr. Popko’s elegant new book extends both the science and the art of spherical modeling to include Computer-Aided Design and applications, which I would never have imagined when I started down this fascinating and rewarding path. His lovely illustrations bring the subject to life for all readers, including those who are not drawn to the mathematics. This book demonstrates the scope, beauty, and utility of an art and science with roots in antiquity. [. . .] Anyone with an interest in the geometry of spheres, whether a professional engineer, an architect or product designer, a student, a teacher, or simply someone curious about the spectrum of topics to be found in this book, will find it helpful and rewarding. – Magnus Wenninger, Benedictine Monk and Polyhedral Modeler Ed Popko's comprehensive survey of the history, literature, geometric, and mathematical properties of the sphere is the definitive work on the subject. His masterful and thorough investigation of every aspect is covered with sensitivity and intelligence. This book should be in the library of anyone interested in the orderly subdivision of the sphere. – Shoji Sadao, Architect, Cartographer and lifelong business partner of Buckminster Fuller Edward Popko's Divided Spheres is a "thesaurus" must to those whose academic interest in the world of geometry looks to greater coverage of synonyms and antonyms of this beautiful shape we call a sphere. The late Buckminster Fuller might well place this manuscript as an all-reference for illumination to one of nature's most perfect inventions. – Thomas T. K. Zung, Senior Partner, Buckminster Fuller, Sadao, & Zung Architects. This first edition of this well-illustrated book presented a thorough introduction to the mathematics of Buckminster Fuller’s invention of the geodesic dome, which paved the way for a flood of practical applications as diverse as weather forecasting and fish farms. The author explained the principles of spherical design and the three classic methods of subdivision based on geometric solids (polyhedra). This thoroughly edited new edition does all that, while also introducing new techniques that extend the class concept by relaxing the triangulation constraint to develop two new forms of optimized hexagonal tessellations. The objective is to generate spherical grids where all edge (or arc) lengths or overlap ratios are equal. New to the Second Edition New Foreword by Joseph Clinton, lifelong Buckminster Fuller collaborator A new chapter by Chris Kitrick on the mathematical techniques for developing optimal single-edge hexagonal tessellations, of varying density, with the smallest edge possible for a particular topology, suggesting ways of comparing their levels of optimization An expanded history of the evolution of spherical subdivision New applications of spherical design in science, product design, architecture, and entertainment New geodesic algorithms for grid optimization New full-color spherical illustrations created using DisplaySphere to aid readers in visualizing and comparing the various tessellations presented in the book Updated Bibliography with references to the most recent advancements in spherical subdivision methods
Download or read book A Comprehensive Introduction to Sub Riemannian Geometry written by Andrei Agrachev and published by Cambridge University Press. This book was released on 2019-10-31 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive and self-contained introduction to sub-Riemannian geometry and its applications. For graduate students and researchers.
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Download or read book Divided Spheres written by Edward S. Popko and published by CRC Press. This book was released on 2012-07-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-illustrated book-in color throughout-presents a thorough introduction to the mathematics of Buckminster Fuller's invention of the geodesic dome, which paved the way for a flood of practical applications as diverse as weather forecasting and fish farms. The author explains the principles of spherical design and the three main categories of
Download or read book Riemannian Geometry written by Wilhelm P.A. Klingenberg and published by Walter de Gruyter. This book was released on 2011-05-03 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic Models for Fractional Calculus, second edition (2018) Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Kezheng Li, Group Schemes and Their Actions (2019; together with Tsinghua University Press) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Download or read book Lectures on Closed Geodesics written by W Klingenberg and published by . This book was released on 1978-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Geometry written by Christian Bär and published by Cambridge University Press. This book was released on 2010-05-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.
Download or read book Nonlinear PDEs Their Geometry and Applications written by Radosław A. Kycia and published by Springer. This book was released on 2019-05-18 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.