EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Geomechanics of CO sub 2  Storage in Deep Sedimentary Formations

Download or read book The Geomechanics of CO sub 2 Storage in Deep Sedimentary Formations written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such largescale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.

Book The Geomechanics of CO2 Storage in Deep Sedimentary Formations

Download or read book The Geomechanics of CO2 Storage in Deep Sedimentary Formations written by and published by . This book was released on 2012 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. In conclusion, for such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.

Book Carbon Dioxide Capture for Storage in Deep Geologic Formations   Results from the CO2 Capture Project

Download or read book Carbon Dioxide Capture for Storage in Deep Geologic Formations Results from the CO2 Capture Project written by David C Thomas and published by Elsevier. This book was released on 2015-01-03 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike. The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP’s goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis.

Book Carbon Dioxide Capture for Storage in Deep Geologic Formations   Results from the CO2 Capture Project

Download or read book Carbon Dioxide Capture for Storage in Deep Geologic Formations Results from the CO2 Capture Project written by David C Thomas and published by Elsevier. This book was released on 2005-01-06 with total page 1358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, the prospect of climate change resulting from anthropogenic CO2 has become a matter of growing public concern. Not only is the reduction of CO2 emissions extremely important, but keeping the cost at a manageable level is a prime priority for companies and the public, alike.The CO2 capture project (CCP) came together with a common goal in mind: find a technological process to capture CO2 emissions that is relatively low-cost and able be to be expanded to industrial applications. The Carbon Dioxide Capture and Storage Project outlines the research and findings of all the participating companies and associations involved in the CCP. The final results of thousands of hours of research are outlined in the book, showing a successful achievement of the CCP’s goals for lower cost CO2 capture technology and furthering the safe, reliable option of geological storage. The Carbon Dioxide Capture and Storage Project is a valuable reference for any scientists, industrialists, government agencies, and companies interested in a safer, more cost-efficient response to the CO2 crisis. *Succeeds in tackling the most important issues at the heart of the CO2 crisis: lower-cost and safer solutions, and making the technology available at an industrial level.*Contains technical papers and findings of all researchers involved in the CO2 capture and storage project (CCP)*Consolidates thousands of hours of research into a concise and valuable reference work, providing up-to-the minute information on CO2 capture and underground storage alternatives.

Book Science of Carbon Storage in Deep Saline Formations

Download or read book Science of Carbon Storage in Deep Saline Formations written by Pania Newell and published by Elsevier. This book was released on 2018-09-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.

Book Subtask 2 17   CO sub 2  Storage Efficiency in Deep Saline Formations

Download or read book Subtask 2 17 CO sub 2 Storage Efficiency in Deep Saline Formations written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO2) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO2. Geologic CO2 storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO2 emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO2 in DSFs but until now have not directly compared CO2 storage resource estimates made with volumetric methodologies to estimates made using dynamic CO2 storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO2 storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO2 storage resource potential is timedependent and it asymptotically approaches the volumetric CO2 storage resource potential over very long periods of time in the two systems that were evaluated. These results indicate that the volumetric assessments can be used as long as the appropriate storage efficiency terms are used and it is understood that it will take many wells over very long periods of time to fully realize the storage potential of a target formation. This subtask was funded through the Energy & Environmental Research Center (EERC)- U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R & D Programme.

Book Science of Carbon Storage in Deep Saline Formations

Download or read book Science of Carbon Storage in Deep Saline Formations written by Pania Newell and published by Elsevier. This book was released on 2018-09-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage. Includes the underlying scientific research, as well as the risks associated with geological carbon storage Covers the topic of geological carbon storage from various disciplines, addressing the multi-scale and multi-physics aspects of geological carbon storage Organized by discipline for ease of navigation

Book Geological Storage of CO2 in Deep Saline Formations

Download or read book Geological Storage of CO2 in Deep Saline Formations written by Auli Niemi and published by Springer. This book was released on 2017-02-24 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.

Book Simulation Framework for Regional Geologic CO sub 2  Storage Along Arches Province of Midwestern United States

Download or read book Simulation Framework for Regional Geologic CO sub 2 Storage Along Arches Province of Midwestern United States written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents final technical results for the project Simulation Framework for Regional Geologic CO2 Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO2) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO2 storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO2 storage because of the intersection of reservoir thickness and permeability. Many CO2 sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km2 study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO2 injection. Permeability data were corrected in locations where reservoir tests have been performed in Mount Simon injection wells. The geocellular model was used to develop a series of numerical simulations designed to support CO2 storage applications in the Arches Province. Variable density fluid flow simulations were initially run to evaluate model sensitivity to input parameters. Two dimensional, multiple-phase simulations were completed to evaluate issues related to arranging injection fields in the study area. A basin-scale, multiple-phase model was developed to evaluate large scale injection effects across the region. Finally, local scale simulations were also completed with more detailed depiction of the Eau Claire formation to investigate to the potential for upward migration of CO2. Overall, the technical work on the project concluded that injection large-scale injection may be achieved with proper field design, operation, siting, and monitoring. Records from Mount Simon injection wells were compiled, documenting more than 20 billion gallons of injection into the Mount Simon formation in the Arches Province over the past 40 years, equivalent to approximately 60 million metric tons CO2. The multi-state team effort was useful in delineating the geographic variability in the Mount Simon reservoir properties. Simulations better defined potential well fields, well field arrangement, CO2 pipeline distribution system, and operational parameters for large-scale injection in the Arches Province. Multiphase scoping level simulations suggest that injection fields with arrays of 9 to 50+ wells may be used to accommodate large injection volumes. Individual wells may need to be separated by 3 to 10 km. Injection fields may require spacing of 25 to 40 km to limit pressure and saturation front interference. Basin-scale multiple-phase simulations in STOMP reflect variability in the Mount Simon. While simulations suggest a total injection rate of 100 million metric tons per year (approximately to a 40% reduction of CO2 emissions from large p ...

Book Natural and Industrial Analogues for Release of CO2 from Storagereservoirs

Download or read book Natural and Industrial Analogues for Release of CO2 from Storagereservoirs written by Jens Birkholzer and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The injection and storage of anthropogenic CO{sub 2} in deep geologic formations is a potentially feasible strategy to reduce CO{sub 2} emissions and atmospheric concentrations. While the purpose of geologic carbon storage is to trap CO{sub 2} underground, CO{sub 2} could migrate away from the storage site into the shallow subsurface and atmosphere if permeable pathways such as well bores or faults are present. Large-magnitude releases of CO{sub 2} have occurred naturally from geologic reservoirs in numerous volcanic, geothermal, and sedimentary basin settings. Carbon dioxide and natural gas have also been released from geologic CO{sub 2} reservoirs and natural gas storage facilities, respectively, due to influences such as well defects and injection/withdrawal processes. These systems serve as natural and industrial analogues for the potential release of CO{sub 2} from geologic storage reservoirs and provide important information about the key features, events, and processes (FEPs) that are associated with releases, as well as the health, safety, and environmental consequences of releases and mitigation efforts that can be applied. We describe a range of natural releases of CO{sub 2} and industrial releases of CO{sub 2} and natural gas in the context of these characteristics. Based on this analysis, several key conclusions can be drawn, and lessons can be learned for geologic carbon storage. First, CO{sub 2} can both accumulate beneath, and be released from, primary and secondary reservoirs with capping units located at a wide range of depths. Both primary and secondary reservoir entrapments for CO{sub 2} should therefore be well characterized at storage sites. Second, many natural releases of CO{sub 2} have been correlated with a specific event that triggered the release, such as magmatic fluid intrusion or seismic activity. The potential for processes that could cause geomechanical damage to sealing cap rocks and trigger the release of CO{sub 2} from a storage reservoir should be evaluated. Third, unsealed fault and fracture zones may act as fast and direct conduits for CO{sub 2} flow from depth to the surface. Risk assessment should therefore emphasize determining the potential for and nature of CO{sub 2} migration along these structures. Fourth, wells that are structurally unsound have the potential to rapidly release large quantities of CO{sub 2} to the atmosphere. Risk assessment should therefore be focused on the potential for both active and abandoned wells at storage sites to transport CO{sub 2} to the surface, particularly at sites with depleted oil or gas reservoirs where wells are abundant. Fifth, the style of CO{sub 2} release at the surface varies widely between and within different leakage sites. In rare circumstances, the release of CO{sub 2} can be a self-enhancing and/or eruptive process; this possibility should be assessed in the case of CO{sub 2} leakage from storage reservoirs. Sixth, the hazard to human health has been small in most cases of large surface releases of CO{sub 2}. This could be due to implementation of public education and CO{sub 2} monitoring programs; these programs should therefore be employed to minimize potential health, safety, and environmental effects associated with CO{sub 2} leakage. Finally, while changes in groundwater chemistry were related to CO{sub 2} leakage due to acidification and interaction with host rocks along flow paths, waters remained potable in most cases. Groundwaters should be monitored for changes that may be associated with storage reservoir leakage.

Book Thermo Hydro Mechanical Coupling in Fractured Rock

Download or read book Thermo Hydro Mechanical Coupling in Fractured Rock written by Hans-Joachim Kümpel and published by Springer Science & Business Media. This book was released on 2003-03-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The supply and protection of groundwater, the production of hydrocarbon reservoirs, land subsidence in coastal areas, exploitation of geothermal energy, the long-term disposal of critical wastes ... What do these issues have in common besides their high socio-economic impact? They are all closely related to fluid flow in porous and/or fractured rock. As the conditions of fluid flow in many cases depend on the mechanical behavior of rocks, coupling between the liquid phase and the rock matrix can generally not be neglected. For the past five years or so, studies of rock physics and rock mechanics linked to coupling phenomena have received increased attention. In recognition of this, a Euroconference on thermo-hydro-mechanical coupling in fractured rock was held at Bad Honnef, Germany, in November 2000. Most of the twenty papers collected in this volume were presented at this meeting. The contributions lead to deeper insight in processes where such coupling is relevant.

Book Geomechanics in CO2 Storage Facilities

Download or read book Geomechanics in CO2 Storage Facilities written by Gilles Pijaudier-Cabot and published by John Wiley & Sons. This book was released on 2013-01-29 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage facilities, with particular attention given to coupled geomechanical problems. The book is divided into three parts. The first part is dedicated to transport processes and focuses on the efficiency of the storage complex and the evaluation of possible leakage paths. The second part deals with issues related to reservoir injectivity and the presence of fractures and occurrence of damage. The final part of the book concerns the serviceability and ageing of the geomaterials whose poromechanical properties may be altered by contact with the injected reactive fluid.

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-15
  • ISBN : 1119118670
  • Pages : 372 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. ... A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland

Book Novel Concepts Research in Geologic Storage of CO2

Download or read book Novel Concepts Research in Geologic Storage of CO2 written by Neeraj Gupta and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the July-September 2006 period of the project. As discussed in the following report, the main accomplishments were reservoir modeling for the Copper Ridge ''B-zone'' and design and feasibility support tasks. Work continued on the development of injection well design options, engineering assessment of CO2 capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. In addition, an integrated risk analysis of the proposed system was completed. Finally, slipstream capture construction issues were evaluated with AEP to move the project toward an integrated carbon capture and storage system at the Mountaineer site. Overall, the current design feasibility phase project is proceeding according to plans.

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Geological Storage of CO2     Long Term Security Aspects

Download or read book Geological Storage of CO2 Long Term Security Aspects written by Axel Liebscher and published by Springer. This book was released on 2015-02-21 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.

Book THE OHIO RIVER VALLEY CO2 STORAGE PROJECT   PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

Download or read book THE OHIO RIVER VALLEY CO2 STORAGE PROJECT PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS written by Michael J. Mudd and published by . This book was released on 2003 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.