EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations

Download or read book The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations written by Arunas Liulevicius and published by American Mathematical Soc.. This book was released on 1962 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Secondary Cohomology Operations

Download or read book Secondary Cohomology Operations written by John R. Harper and published by American Mathematical Soc.. This book was released on 2002 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the theory and applications of secondary cohomology operations are an important part of an advanced graduate-level algebraic topology course, there are few books on the subject. The AMS now fills that gap with the publication of the present volume. The author's main purpose in this book is to develop the theory of secondary cohomology operations for singular cohomology theory, which is treated in terms of elementary constructions from general homotopy theory. Among manyapplications considered are the Hopf invariant one theorem (for all primes $p$, including $p = 2$), Browder's theorem on higher Bockstein operations, and cohomology theory of Massey-Peterson fibrations. Numerous examples and exercises help readers to gain a working knowledge of the theory. A summary ofmore advanced parts of the core material is included in the first chapter. Prerequisite is basic algebraic topology, including the Steenrod operations. The book is geared toward graduate students and research mathematicians interested in algebraic topology and can be used for self-study or as a textbook for an advanced course on the topic. It is available in both hardcover and softcover editions.

Book The Algebra of Secondary Cohomology Operations

Download or read book The Algebra of Secondary Cohomology Operations written by Hans-Joachim Baues and published by Springer Science & Business Media. This book was released on 2006-06-12 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The algebra of primary cohomology operations computed by the well-known Steenrod algebra is one of the most powerful tools of algebraic topology. This book computes the algebra of secondary cohomology operations which enriches the structure of the Steenrod algebra in a new and unexpected way. The book solves a long-standing problem on the algebra of secondary cohomology operations by developing a new algebraic theory of such operations. The results have strong impact on the Adams spectral sequence and hence on the computation of homotopy groups of spheres.

Book Odd Primary Infinite Families in Stable Homotopy Theory

Download or read book Odd Primary Infinite Families in Stable Homotopy Theory written by Ralph L. Cohen and published by American Mathematical Soc.. This book was released on 1981 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses issues with odd primary infinite families in stable homotopy theory.

Book Polynomials and the mod 2 Steenrod Algebra

Download or read book Polynomials and the mod 2 Steenrod Algebra written by Grant Walker and published by Cambridge University Press. This book was released on 2018 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of two volumes covering the Steenrod algebra and its various applications. Suitable as a graduate text.

Book Polynomials and the mod 2 Steenrod Algebra  Volume 2  Representations of GL  n F2

Download or read book Polynomials and the mod 2 Steenrod Algebra Volume 2 Representations of GL n F2 written by Grant Walker and published by Cambridge University Press. This book was released on 2017-11-09 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's `hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n, F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

Book Polynomials and the mod 2 Steenrod Algebra

Download or read book Polynomials and the mod 2 Steenrod Algebra written by Grant Walker (Mathematician) and published by Cambridge University Press. This book was released on 2018 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

Book Lie Algebras and Lie Groups

Download or read book Lie Algebras and Lie Groups written by and published by American Mathematical Soc.. This book was released on 1955 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: The American Mathematical Society, with the financial support of the National Science Foundation, held its First Summer Mathematical Institute from June 20 to July 31, 1953. The topic chosen was Lie theory, twenty-nine mathematicians active in this area attended. The six-week period provided opportunity both for the interchange of ideas and for the subsequent shaping of ideas into theorems. The five papers present some results achieved by the participants.--Foreword.

Book The Adams Spectral Sequence for Topological Modular Forms

Download or read book The Adams Spectral Sequence for Topological Modular Forms written by Robert R. Bruner and published by American Mathematical Society. This book was released on 2021-12-23 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.

Book Algebraic Methods in Unstable Homotopy Theory

Download or read book Algebraic Methods in Unstable Homotopy Theory written by Joseph Neisendorfer and published by Cambridge University Press. This book was released on 2010-02-18 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.

Book H Ring Spectra and Their Applications

Download or read book H Ring Spectra and Their Applications written by Robert R. Bruner and published by Springer. This book was released on 2006-11-14 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algebraic Topology

    Book Details:
  • Author : Arunas Liulevicius
  • Publisher : American Mathematical Soc.
  • Release : 1971
  • ISBN : 0821814222
  • Pages : 302 pages

Download or read book Algebraic Topology written by Arunas Liulevicius and published by American Mathematical Soc.. This book was released on 1971 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Homology

    Book Details:
  • Author : Saunders MacLane
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642620299
  • Pages : 436 pages

Download or read book Homology written by Saunders MacLane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: In presenting this treatment of homological algebra, it is a pleasure to acknowledge the help and encouragement which I have had from all sides. Homological algebra arose from many sources in algebra and topology. Decisive examples came from the study of group extensions and their factor sets, a subject I learned in joint work with OTTO SCHIL LING. A further development of homological ideas, with a view to their topological applications, came in my long collaboration with SAMUEL ElLENBERG; to both collaborators, especial thanks. For many years the Air Force Office of Scientific Research supported my research projects on various subjects now summarized here; it is a pleasure to acknowledge their lively understanding of basic science. Both REINHOLD BAER and JOSEF SCHMID read and commented on my entire manuscript; their advice has led to many improvements. ANDERS KOCK and JACQUES RIGUET have read the entire galley proof and caught many slips and obscurities. Among the others whose sug gestions have served me well, I note FRANK ADAMS, LOUIS AUSLANDER, WILFRED COCKCROFT, ALBRECHT DOLD, GEOFFREY HORROCKS, FRIED RICH KASCH, JOHANN LEICHT, ARUNAS LIULEVICIUS, JOHN MOORE, DIE TER PUPPE, JOSEPH YAO, and a number of my current students at the University of Chicago - not to m~ntion the auditors of my lectures at Chicago, Heidelberg, Bonn, Frankfurt, and Aarhus. My wife, DOROTHY, has cheerfully typed more versions of more chapters than she would like to count. Messrs.

Book Group Representations  Cohomology  Group Actions and Topology

Download or read book Group Representations Cohomology Group Actions and Topology written by Alejandro Adem and published by American Mathematical Soc.. This book was released on 1998 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume combines contributions in topology and representation theory that reflect the increasingly vigorous interactions between these areas. Topics such as group theory, homotopy theory, cohomology of groups, and modular representations are covered. All papers have been carefully refereed and offer lasting value.

Book Stable and Unstable Homotopy

Download or read book Stable and Unstable Homotopy written by William G. Dwyer and published by American Mathematical Soc.. This book was released on 1998-01-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Fields Institute as part of the homotopy program during the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.

Book Complex Cobordism and Stable Homotopy Groups of Spheres

Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Society. This book was released on 2023-02-09 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Book Primary Homotopy Theory

Download or read book Primary Homotopy Theory written by Joseph Neisendorfer and published by American Mathematical Soc.. This book was released on 1980 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author gives a systematic exposition of homotopy groups with coefficients in a cyclic group [italic]Z or [italic]Z[subscript italic]k. The text pays particular attention to low-dimensional cases and trouble with the small primes. The book gives a complete treatment of some topics--such as Samelson products--with a view toward applications.