EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Effects of Drought and High Temperature Stress on Reproduction  Physiology  and Yield of Spring and Winter Wheat

Download or read book The Effects of Drought and High Temperature Stress on Reproduction Physiology and Yield of Spring and Winter Wheat written by Kyle J. Shroyer and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Drought and high temperature are major detriments to global wheat production. Wheat varies in its susceptibility to drought and high temperature stress. Three experiments were performed to address the challenges of drought and high temperature stress in wheat. The first experiment consisted of 256 genotypes of spring wheat and 301 genotypes of winter wheat, field screened for yield traits related to drought tolerance, in irrigated and dryland experiments. The experimental designs for the first experiment were both augmented incomplete block designs with one-way or row-column blocking. This experiment was performed at the Ashland Bottom Research Farm, south of Manhattan, KS, between 2011-2013. From this experiment, three conclusions were made: wheat genotypes vary widely in their responses between dryland and irrigated treatments and this variation can be used in future experiments or breeding tolerant genotypes. The number of seeds per unit of area, total biomass per unit area, and the average weight of one thousand seeds, were the best yield traits for predicting yield in both irrigated and dryland environments. Twenty genotypes were selected for future research based on their susceptibility or tolerance to drought. The second experiment was performed in the greenhouse facilities to observe the source-sink relationship of spring wheat genotype Seri 82 under drought and defoliation. The experiment was a randomized complete block design with a split-plot treatment arrangement. Post-anthesis cessation of watering and defoliation were the treatments. Both water stress and defoliation affected seed yield and total biomass. The major effect of post-anthesis water stress was a decrease in single seed weight. Defoliation affected the source-sink relationship by reducing the source strength of the leaves. This caused the stem to contribute more to overall yield. The defoliation also caused the remaining leaves to compensate for the removed leaves. The final experiment evaluated the changes in seed-filling rate and duration of three winter wheat genotypes during high temperature stress. High temperature stress reduced the duration of seed fill and increased the rate, differently in each genotype. Higher yields in the winter wheat growing regions, susceptible to post-anthesis high temperature stress, may be possible through selection of cultivars with faster seed-filling rates and/or duration of seed filling.

Book Wheat

    Book Details:
  • Author : E H Satorre
  • Publisher : CRC Press
  • Release : 1999-05-06
  • ISBN : 9781560228745
  • Pages : 544 pages

Download or read book Wheat written by E H Satorre and published by CRC Press. This book was released on 1999-05-06 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discussing the latest processes involved in researching yield generation, Wheat: Ecology and Physiology of Yield Determination will help you design various types of crop production systems for maximum yield. Featuring information on developing high-yielding, low-input, and quality-oriented systems, this book offers you both physiological and ecological approaches that will help you understand the crop as well as increase its production. Discussing aspects of wheat growth for specific regions around the world, Wheat provides you with information that will improve the size and quality of your crops, including: how temperature, vernalization, and the photoperiod affect the development of wheat using the correct amount of nitrogen fertilizers for wheat crops an explanation of the reproduction and nitrogen cycles of wheat how elements and conditions such as lipids, proteins, nitrogen, and climate enhance grain quality estimating and determining optimal sowing dates examining factors that may affect wheat yield-density relationships, such as planting arrangement and date of sowing preventing seed decay and examining effects of mildews and leaf blights examining historical trends of the crop to see what further research needs to be done You'll also receive information on the genetic gains in wheat research that are improving the physiological traits and numerical components of this essential grain. Within Wheat, you'll find data and methods from international experts in the field that will improve the yield and growth of the world's most important crop.

Book Effects of Drought And or High Temperature Stress on Wild Wheat Relatives  AEGILOPS Species  and Synthetic Wheats

Download or read book Effects of Drought And or High Temperature Stress on Wild Wheat Relatives AEGILOPS Species and Synthetic Wheats written by Gautam Prasad Pradhan and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: High temperature (HT) and drought are detrimental to crop productivity, but there is limited variability for these traits among wheat ([italics]Triticum aestivum[end italics] L.) cultivars. Five [italics]Aegilops[end italics] species were screened to identify HT (52 accessions) and drought (31 accessions) tolerant species/accessions and ascertaining traits associated with tolerance. Four synthetic wheats were studied to quantify independent and combined effects of HT and drought. [italics]Aegilops[end italics] species were grown at 25/19°C day/night and 18 h photoperiod. At anthesis, HT was imposed by transferring plants to growth chambers set at 36/30°C, whereas in another experiment, drought was imposed by withholding irrigation. Synthetic wheats were grown at 21/15°C day/night and 18 h photoperiod. At anthesis or 21 d after anthesis, plants were exposed to optimum condition (irrigation + 21/15°C), HT (irrigation + 36/30°C), drought (withhold irrigation + 21/15°C), and combined stress (withhold irrigation + 36/30°C). Stresses were imposed for 16 d. High temperature and drought stress significantly decreased chlorophyll, grain number, individual grain weight, and grain yield of [italics]Aegilops[end italics] species ([greater than or equal too] 25%). Based on a decrease in grain yield, [italics]A. speltoides[end italics] and [italics]A. geniculata[end italics] were most tolerant (~ 61% decline), and [italics]A. longissima[end italics] was highly susceptible to HT stress (84% decline). Similarly, [italics]A. geniculata[end italics] had greater tolerance to drought (48% decline) as compared to other species ([greater than or equal too] 73% decline). Tolerance was associated with higher grains spike [superscript]-1 and/or heavier grains. Within [italics]A. speltoides[end italics], accession TA 2348 was most tolerant to HT with 13.5% yield decline and a heat susceptibility index (HSI) 0.23. Among [italics]A. geniculata[end italics], TA 2899 and TA 1819 were moderately tolerant to HT with an HSI 0.80. TA 10437 of [italics]A. geniculata[end italics] was the most drought tolerant accession with 7% yield decline and drought susceptibility index 0.14. Irrespective of the time of stress, HT, drought, and combined stress decreased both individual grain weight and grain yield of synthetic wheats by [greater than or equal to 37%, 26%, and 50%, respectively. These studies suggest a presence of genetic variability among [italics]Aegilops[end italics] species that can be utilized in breeding wheat for HT and drought tolerance at anthesis; and combined stress of drought and high temperature on synthetic wheats are hypo-additive in nature.

Book Physiological Breeding

    Book Details:
  • Author : Alistair Pask
  • Publisher : CIMMYT
  • Release : 2012
  • ISBN : 9706481826
  • Pages : 140 pages

Download or read book Physiological Breeding written by Alistair Pask and published by CIMMYT. This book was released on 2012 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Salinity and High Temperature Stress on Winter Wheat Genotypes

Download or read book Effects of Salinity and High Temperature Stress on Winter Wheat Genotypes written by Amal Faraj Ahmed Ehtaiwesh and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Increased ambient temperature and soil salinity seriously affect the productivity of wheat (Triticum aestivum L.) which is an important cereal second to rice as the main human food crop. However, wheat plant is most susceptible to high temperatures and salinity at booting and flowering stages. Several studies have documented the effects of individual stress like salinity and high temperature stress on wheat, nonetheless little is known about effects of combined salinity and high temperature at critical growth stages. Therefore, the objectives of this research were (i) to screen winter wheat germplasm for salinity tolerance at the germination stages and to determine seedling growth traits associated with salinity tolerance, (ii) to evaluate the independent and combined effects of high temperature and salinity on winter wheat genotypes at the booting stages through growth, physiological, biochemical, and yield traits, and (iii) to evaluate the independent and combined effects of high temperature and salinity on winter wheat genotypes at the flowering stages through growth, physiological, biochemical, and yield traits. In the first experiment, 292 winter wheat genotypes (winter wheat germplasm) was screened for salinity stress at germination stage under controlled environments. The seeds were subjected to three levels of salinity, 0, 60, and 120 mM NaCl to quantify the effects of salinity on seed germination and seedling growth. In the second experiment, controlled environment study was conducted to quantity the independent and combined high temperature and salinity stress effects on growth, physiological, biochemical, and yield traits of twelve winter wheat genotypes during booting stage. Plants were grown at 20/15 °C (daytime maximum/nighttime minimum) temperature with 16 h photoperiod. At booting stages, the plants were exposed to optimum (20/15 °C) or high temperature (35/20 °C) and without (0 mM NaCl) and with (60, and 120 mM) NaCl. In the third experiment, plants were exposed to optimum or high temperature and with and without NaCl levels at flowering stages. The temperature regime and salinity levels were same as experiment II. The duration of stress was 10 d and after the stress period the plants were brought to optimum temperature and irrigated with normal water (0 mM NaCl). The results indicated that, at 120 mM NaCl, the final germination percentage was decreased and the mean daily germination was delayed. Irrespective of the genotype, salinity stress significantly decreased the shoot and root length; seedling dry matter production, and seedling vigor. Based on the seedling vigor index, the genotype GAGE, OK04507, MTS0531, TASCOSA, ENDURANCE and GUYMON, were found to be most tolerant and CO04W320, 2174-05, CARSON, OK1070275, TX02A0252 and TX04M410211 were the most susceptible to salinity at germination stage. Combined stresses of high temperature and salinity decreased photosynthetic rate and grain yields. Based on grain yield, the genotype TASCOSA was found to be most tolerant (64 % decrease) to combined stresses, and AVALANCHE was the most susceptible to combined stresses (75 % decrease) at booting stages. Similarly, at flowering stage, TX04M410211 had greater tolerance to combined stresses (65 % decline) as compared to GAGE (83 % decline). In both experiments, tolerance was associated with higher spikelet number and seed set. In conclusion, there is genetic variability among winter wheat genotypes that can be used in breeding programs to improve winter wheat yield under combined high temperature and salinity stress conditions.

Book Crop physiological responses to abiotic stress

Download or read book Crop physiological responses to abiotic stress written by Rangjian Qiu and published by Frontiers Media SA. This book was released on 2024-01-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Plant Physiology Vol  18

Download or read book Advances in Plant Physiology Vol 18 written by A. Hemantaranjan and published by Scientific Publishers. This book was released on 2019-08-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The reinforcement of Volume 18 of the Advances in Plant Physiology Series has been entirely due to commendable contributions by Scientists of Eminence in explicit fields. The enterprise of publishing the International Treatise Series on Plant Physiology has to genuinely sort out the scantiness of consequential researches, which are sincerely required for rising productivity, prosperity and sustainability of agriculture through prominently emerging technologies for reformation in metabolic boundaries necessitates mainly for abiotic stress factors. Unquestionably, our thought is to be familiar with ground-breaking science of value across the broad punitive range of the treatise. The aspiration is to make stronger the vital outcome of conscientious research in some of the very responsive areas of Plant Physiology-Plant Molecular Physiology/Biology that broadly focus upon the advancements coupled with underlying mechanisms of plant tolerance under changing environments. The Volume 18, with innovative applied research, brings jointly much needed nineteen review articles by over fifty committed contributors for this volume. The Volume 18 exclusively deals with challenges of continuing worldwide concern over the stress physiology research. Conversely, this volume also highlights trace elements; plant functional research; physiological basis of yield variation; medicinal and aromatic plants.

Book Application of Physiology in Wheat Breeding

Download or read book Application of Physiology in Wheat Breeding written by M. P. Reynolds and published by CIMMYT. This book was released on 2001 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Abiotic Stresses in Wheat

Download or read book Abiotic Stresses in Wheat written by Mohd. Kamran Khan and published by Elsevier. This book was released on 2023-01-11 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abiotic Stresses in Wheat: Unfolding the Challenges presents the current challenges, possibilities, and advancements in research-based management strategies for the adaptation of wheat crops under abiotic-stressed growth conditions. This book comprehensively discusses different abiotic stress conditions in wheat, and also covers current trends in their mitigation using advanced tools to develop resilience in wheat crops. Chapters provide insight into the genetic, biochemical, physiological, molecular, and transgenic advances and emerging frontiers for mitigating the effects of wheat abiotic stresses. This text is the first resource to include all abiotic stresses in one volume, providing important translational insights and efficient comparison. Describes advances in conventional and modern breeding approaches in countering the effect of wheat abiotic stresses Highlights the role of physiological, biochemical and OMICS strategies Includes coverage of biotechnological tools such as whole genome sequencing, nanotechnology, and genome editing

Book Crop Physiology Case Histories for Major Crops

Download or read book Crop Physiology Case Histories for Major Crops written by Victor Sadras and published by Academic Press. This book was released on 2020-12-05 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. A crop-based approach to crop physiology in a G x E x M context Captures the perspectives of global experts on 22 crops

Book Proceedings of the 11th International Wheat Genetics Symposium  24 29 August 2008  Brisbane  Qld   Australia

Download or read book Proceedings of the 11th International Wheat Genetics Symposium 24 29 August 2008 Brisbane Qld Australia written by Rudi Appels and published by Sydney University Press. This book was released on 2008 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers herein are volume 3 of the proceedings of the 11th International Wheat Genetics Symposium, held in Brisbane, Australia, in 2008. The series presents the science of the genetic sciences applied to bread and durum wheats and other species.

Book Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water limited Environments

Download or read book Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water limited Environments written by Jean-Marcel Ribaut and published by CIMMYT. This book was released on 2000 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crop Stress and its Management  Perspectives and Strategies

Download or read book Crop Stress and its Management Perspectives and Strategies written by B. Venkateswarlu and published by Springer Science & Business Media. This book was released on 2011-11-22 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.

Book Wheat Improvement for Heat and Drought Stress Tolerance

Download or read book Wheat Improvement for Heat and Drought Stress Tolerance written by Anju Giri and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat and drought are the major abiotic factors that limit wheat production worldwide. Wheat is one of the important staple crops, so, the production decline due to these factors faces a major challenge in addressing food security. Grain filling in wheat occurs when the temperature is rising, and soil moisture is declining in most wheat growing environment, so there is high demand in breeding wheat for post anthesis heat and drought stress tolerance. However, limited genetic variability in wheat cultivars possess a challenge. The objective of the first study was to screen wild emmer wheat (Triticum dicoccoides) for post anthesis heat tolerance and measure physiological traits and yield trait associated with the tolerance. Twenty-one accessions of Triticum dicoccoides and four check varieties were screened at optimum temperature (25/19 °C day/night) and high temperature (35/29 °C day/night). High temperature decreased flag leaf survival duration, chlorophyll content, and chlorophyll fluorescence more in the wild accessions than in the checks. A few wild accessions were found to be heat tolerant based on the lower heat susceptibility index (HSI) value in seed weight. Therefore, there is a potential for utilizing this genetic variability from the accessions to improve post anthesis heat tolerance in wheat. The maintenance in seed weight might be coming from the mobilization of stored reserve in the stem. The stem reserves are commonly called water-soluble carbohydrates (WSC). WSC accumulated during the vegetative stage, pre-flowering, or right after flowering can be mobilized to assist grain filling when assimilate supply is limited under stress. The second chapter is about the physiological and genetic basis of water-soluble carbohydrates (WSC) concentration during mid- grainfilling stage in wheat. We evaluated 400 diverse winter wheat breeding lines and 30 released varieties in different environments ranging from irrigated to rainfed for WSC concentration. WSC concentration was significantly and positively correlated with the seed weight, whereas the height was mostly negatively correlated, and we didn't see any relation with heading date. Less decline in grain yield under simulated terminal drought stress was observed in varieties with high WSC content. Further, we identified six significant SNP markers in 7D region significantly associated with the WSC concentration, and each marker explained 4-5% of the variation. On running several genomic selection prediction models on WSC using ridge regression, partial least squares, elastic net, and random forest models and different training population sizes (20%, 40%, 60%, and 80%), the prediction accuracy increased from 0.2 to 0.6. The accuracy increased as a large amount of data was available to train the model, and overall the highest accuracy was observed with the random forest and average of all four models. The accuracy can be further increased with the inclusion of a large number of samples, and multi- year and location testing on WSC. Higher genetic variation, high heritability, and significant positive relation with seed weight make WSC an important trait for selection under post anthesis drought. In the third study, aerial phenotyping using UAV with a multispectral camera was used to capture the images in three different wave bands: red, green, and near infrared. Normalized Difference Vegetative Index (NDVI) was calculated from red and near infrared bands. NDVI calculated from the aerial imaging during reproductive stages were more correlated with the grain yield than a visual screening of percentage greenness. NDVI measurement during grain filling had the highest significant correlation and explained more than 50% variation in the yield. Lodging was another factor impacting yield explaining about 60% variability in yield. With its wide applicability, aerial phenotyping has the potential for assisting breeders in selecting diverse genotypes and can outperform visual selection.

Book Global Climate Change Impacts in the United States

Download or read book Global Climate Change Impacts in the United States written by U.S. Global Change Research Program and published by Cambridge University Press. This book was released on 2009-08-24 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizes the science of climate change and impacts on the United States, for the public and policymakers.

Book Improving Drought Tolerance in Wheat with Physiological and Molecular Tools

Download or read book Improving Drought Tolerance in Wheat with Physiological and Molecular Tools written by Surya Laxmi Shrestha and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Drought is a limiting factor for wheat (Triticum aestivum L.) production in the low precipitation regions of the Pacific Northwest (PNW). To improve wheat performance in drought, this study focused on three main objectives. Our first objective was to determine water use efficiency (WUE) in the PNW wheat lines through carbon isotope discrimination (CID) technique. Genotypic variation of CID was found in soft spring and hard winter wheat lines. Low CID or high WUE was found important for increasing yield of soft spring wheat lines in drought and semi-drought environments but not in other wheat types. The second objective of this study was to determine important physiological traits associated with yield. Fifteen spring wheat, 140 Alpowa/Express (AE) recombinant inbred lines (RILs) and 165 Hollis/Drysdale (HD) RILs, were evaluated in replicated field trials in two moisture environments, rainfed and irrigated, in different years. The wheat materials were screened for physiological (CT, CID, FLS: Flag leaf senescence), agronomic and phenological traits. The low canopy temperature (CT) was consistently associated with high yield in all wheat lines. The study found that CT was the main driver of wheat adaptation in drought in studied environmental conditions. Our third objective was to identify genomic regions associated with the studied traits through quantitative trait loci (QTL) mapping. In the AE population, yield and test weight QTL were identified on chromosome 1B in the irrigated environments but none of the QTL for physiological traits was found in this chromosomal region. The major QTL associated with yield and CT (at milking), which explained 15 and 22% of the phenotypic variation, were found on chromosome 3B in terminal drought environment. In the HD population, two QTL associated with yield were identified on chromosomes 2A and 4A in averaged rainfed environments in which yield QTL on chromosome 4A explained 35% of the phenotypic variation. These QTL for yield were associated with later FLS. Through the genetic dissection of yield into component traits, this study may help to incorporate quantitative traits into wheat drought breeding programs through marker-assisted selection.

Book Identification and Characterization of Contrasting Genotypes Cultivars to Discover Novel Players in Crop Responses to Abiotic Biotic Stresses

Download or read book Identification and Characterization of Contrasting Genotypes Cultivars to Discover Novel Players in Crop Responses to Abiotic Biotic Stresses written by Raul Antonio Sperotto and published by Frontiers Media SA. This book was released on 2022-02-24 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: