Download or read book Studies on Divergent Series and Summability and The Asymptotic Developments of Functions Defined by Maclaurin Series written by Walter B. Ford and published by American Mathematical Soc.. This book was released on 1960-01-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers 2 main topics: asymptotic series and the theory of summability. This book provides a discussion of nowhere convergent asymptotic series that includes the so-called MacLaurent summation formula, determining asymptotic expansions of various classes of functions, and the study of asymptotic solutions of linear ordinary differential equations.
Download or read book The Asymptotic Developments of Functions Defined by Maclaurin Series written by Walter Burton Ford and published by . This book was released on 1936 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Generalized Mathieu Series written by Živorad Tomovski and published by Springer Nature. This book was released on 2021-11-15 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathieu series is a functional series introduced by Émile Léonard Mathieu for the purposes of his research on the elasticity of solid bodies. Bounds for this series are needed for solving biharmonic equations in a rectangular domain. In addition to Tomovski and his coauthors, Pogany, Cerone, H. M. Srivastava, J. Choi, etc. are some of the known authors who published results concerning the Mathieu series, its generalizations and their alternating variants. Applications of these results are given in classical, harmonic and numerical analysis, analytical number theory, special functions, mathematical physics, probability, quantum field theory, quantum physics, etc. Integral representations, analytical inequalities, asymptotic expansions and behaviors of some classes of Mathieu series are presented in this book. A systematic study of probability density functions and probability distributions associated with the Mathieu series, its generalizations and Planck’s distribution is also presented. The book is addressed at graduate and PhD students and researchers in mathematics and physics who are interested in special functions, inequalities and probability distributions.
Download or read book Asymptotics and Mellin Barnes Integrals written by R. B. Paris and published by Cambridge University Press. This book was released on 2001-09-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.
Download or read book Frontiers In Orthogonal Polynomials And Q series written by M Zuhair Nashed and published by World Scientific. This book was released on 2018-01-12 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.
Download or read book Encyclopedia of Computer Science and Technology written by Jack Belzer and published by CRC Press. This book was released on 1979-10-01 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This comprehensive reference work provides immediate, fingertip access to state-of-the-art technology in nearly 700 self-contained articles written by over 900 international authorities. Each article in the Encyclopedia features current developments and trends in computers, software, vendors, and applications...extensive bibliographies of leading figures in the field, such as Samuel Alexander, John von Neumann, and Norbert Wiener...and in-depth analysis of future directions."
Download or read book The Riemann Hypothesis and the Roots of the Riemann Zeta Function written by Samuel W. Gilbert and published by Riemann hypothesis. This book was released on 2009 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author demonstrates that the Dirichlet series representation of the Riemann zeta function converges geometrically at the roots in the critical strip. The Dirichlet series parts of the Riemann zeta function diverge everywhere in the critical strip. It has therefore been assumed for at least 150 years that the Dirichlet series representation of the zeta function is useless for characterization of the non-trivial roots. The author shows that this assumption is completely wrong. Reduced, or simplified, asymptotic expansions for the terms of the zeta function series parts are equated algebraically with reduced asymptotic expansions for the terms of the zeta function series parts with reflected argument, constraining the real parts of the roots of both functions to the critical line. Hence, the Riemann hypothesis is correct. Formulae are derived and solved numerically, yielding highly accurate values of the imaginary parts of the roots of the zeta function.
Download or read book Encyclopedic Dictionary of Mathematics written by Nihon Sūgakkai and published by MIT Press. This book was released on 1993 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: V.1. A.N. v.2. O.Z. Apendices and indexes.
Download or read book The Special Functions and Their Approximations written by Yudell L. Luke and published by Academic Press. This book was released on 1969 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and self-contained and unified treatment of many mathematical functions which arise in applied problems, as well as the attendant mathematical theory for their approximations. many common features of the Bessel functions, Legendre functions, incomplete gamma functions, confluent hypergeometric functions, as well as of otherw, can be derived. Hitherto, many of the material upon which the volumes are based has been available only in papers scattered throughout the literature.
Download or read book Asymptotics of Linear Differential Equations written by M.H. Lantsman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects.
Download or read book Studies on Divergent Series and Summability written by Walter Burton Ford and published by . This book was released on 1916 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations written by Werner Balser and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
Download or read book Annals of Mathematics written by and published by . This book was released on 1909 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Canadian Mathematical Bulletin written by and published by . This book was released on 1981-09 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Report to the Board of Regents written by University of Michigan and published by . This book was released on 1935 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Global Analysis in Linear Differential Equations written by M. Kohno and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the initiative works for global analysis of linear differential equations by G.G. Stokes and B. Riemann in 1857, the Airy function and the Gauss hypergeometric function became the most important and the greatest practical special functions, which have a variety of applications to mathematical science, physics and engineering. The cffcctivity of these functions is essentially due to their "behavior in the large" . For instance, the Airy function plays a basic role in the asymptotic analysis of many functions arising as solutions of differential equations in several problems of applied math ematics. In case of the employment of its behavior, one should always pay attention to the Stokes phenomenon. On the other hand, as is well-known, the Gauss hypergeometric function arises in all fields of mathematics, e.g., in number theory, in the theory of groups and in analysis itself. It is not too much to say that all power series are special or extended cases of the hypergeometric series. For the full use of its properties, one needs connection formulas or contiguous relations.
Download or read book CAAP 92 written by Jean-Claude Raoult and published by Springer Science & Business Media. This book was released on 1992-02-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected papers presented at the seventeenth Colloquiumon Trees in Algebra and Programming (CAAP) held jointly with the European Symposium on Programming (ESOP) in Rennes, France, February 26-28, 1992 (the proceedings of ESOP appear in LNCS 582). The previous colloquia were held in France, Italy, Germany, Spain, Denmark and England. Every even year, as in 1992, CAAP is held jointly with ESOP; every other year, it is part of TAPSOFT (Theory And Practice of SOFTware development). In the beginning, CAAP was devoted to algebraic and combinatorial properties of trees and their role in various fields of computer science. The scope of CAAP has now been extended to other discrete structures, like graphs, equations and transformations of graphs, and their links with logical theories. The programme committee received 40 submissions, from which 19 papers have been selected for inclusion inthis volume.