Download or read book Linear Algebra As An Introduction To Abstract Mathematics written by Bruno Nachtergaele and published by World Scientific Publishing Company. This book was released on 2015-11-30 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Download or read book A First Course in Linear Algebra written by Kenneth Kuttler and published by . This book was released on 2020 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A First Course in Linear Algebra, originally by K. Kuttler, has been redesigned by the Lyryx editorial team as a first course for the general students who have an understanding of basic high school algebra and intend to be users of linear algebra methods in their profession, from business & economics to science students. All major topics of linear algebra are available in detail, as well as justifications of important results. In addition, connections to topics covered in advanced courses are introduced. The textbook is designed in a modular fashion to maximize flexibility and facilitate adaptation to a given course outline and student profile. Each chapter begins with a list of student learning outcomes, and examples and diagrams are given throughout the text to reinforce ideas and provide guidance on how to approach various problems. Suggested exercises are included at the end of each section, with selected answers at the end of the textbook."--BCcampus website.
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Download or read book Advanced Linear Algebra written by Steven Roman and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Download or read book Linear Algebra Done Right written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 1997-07-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Download or read book Linear Algebra written by Jim Hefferon and published by Orthogonal Publishing L3c. This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This text covers a standard first course : Gauss's method, vector spaces, linear maps and matrices, determinants, and eigenvalues and eigenvectors. In addition, each chapter ends with some topics such as brief applications. What sets it apart is careful motivation, many examples, and extensive exercise sets. Together these help each student master the material of this course, and also help an instructor develop that student's level of mathematical maturity. This book has been available online for many years and is widely used, both in classrooms and for self-study. It is supported by worked answers for all exercises, beamer slides for classroom use, and a lab manual of computer work"--Page 4 of cover.
Download or read book Linear Algebra Theory Intuition Code written by Mike X. Cohen and published by . This book was released on 2021-02 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.Unique aspects of this book: - Clear and comprehensible explanations of concepts and theories in linear algebra. - Several distinct explanations of the same ideas, which is a proven technique for learning. - Visualization using graphs, which strengthens the geometric intuition of linear algebra. - Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software! - Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition. - Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis. - Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition. - Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers. - A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport!
Download or read book Introduction to Linear Algebra written by Gilbert Strang and published by Wellesley College. This book was released on 1993 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book Description: Gilbert Strang's textbooks have changed the entire approach to learning linear algebra -- away from abstract vector spaces to specific examples of the four fundamental subspaces: the column space and nullspace of A and A'. Introduction to Linear Algebra, Fourth Edition includes challenge problems to complement the review problems that have been highly praised in previous editions. The basic course is followed by seven applications: differential equations, engineering, graph theory, statistics, Fourier methods and the FFT, linear programming, and computer graphics. Thousands of teachers in colleges and universities and now high schools are using this book, which truly explains this crucial subject.
Download or read book Linear Algebra and Optimization for Machine Learning written by Charu C. Aggarwal and published by Springer Nature. This book was released on 2020-05-13 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Download or read book The Linear Algebra a Beginning Graduate Student Ought to Know written by Jonathan S. Golan and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book rigorously deals with the abstract theory and, at the same time, devotes considerable space to the numerical and computational aspects of linear algebra. It features a large number of thumbnail portraits of researchers who have contributed to the development of linear algebra as we know it today and also includes over 1,000 exercises, many of which are very challenging. The book can be used as a self-study guide; a textbook for a course in advanced linear algebra, either at the upper-class undergraduate level or at the first-year graduate level; or as a reference book.
Download or read book A Second Course in Linear Algebra written by Stephan Ramon Garcia and published by Cambridge University Press. This book was released on 2017-05-11 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.
Download or read book A First Course In Linear Algebra written by Shou-te Chang and published by World Scientific Publishing Company. This book was released on 2016-07-13 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: A First Course in Linear Algebra is written by two experts from algebra who have more than 20 years of experience in algebra, linear algebra and number theory. It prepares students with no background in Linear Algebra. Students, after mastering the materials in this textbook, can already understand any Linear Algebra used in more advanced books and research papers in Mathematics or in other scientific disciplines.This book provides a solid foundation for the theory dealing with finite dimensional vector spaces. It explains in details the relation between linear transformations and matrices. One may thus use different viewpoints to manipulate a matrix instead of a one-sided approach. Although most of the examples are for real and complex matrices, a vector space over a general field is briefly discussed. Several optional sections are devoted to applications to demonstrate the power of Linear Algebra.
Download or read book Linear Algebra Problem Book written by Paul R. Halmos and published by American Mathematical Soc.. This book was released on 1995-12-31 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.
Download or read book Differential Equations and Linear Algebra written by Charles Henry Edwards and published by Prentice Hall. This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acclaimed authors Edwards and Penney combine core topics in elementary differential equations with those concepts and methods of elementary linear algebra needed for a contemporary combined introduction to differential equations and linear algebra. Known for its real-world applications and its blend of algebraic and geometric approaches, this book discusses mathematical modeling of real-world phenomena, with a fresh new computational and qualitative flavor evident throughout in figures, examples, problems, and applications. First-Order Differential Equations; Mathematical Models and Numerical Methods; Linear Systems and Matrices; Vector Spaces; Higher-Order Linear Differential Equations; Eigenvalues and Eigenvectors; Linear Systems of Differential Equations; Matrix Exponential Methods; Nonlinear Systems and Phenomena; Laplace Transform Methods; Power Series Methods. For future math majors, engineers, or scientists that have taken two or three semesters of Calculus.
Download or read book Introduction To Linear Algebra written by Mark J. DeBonis and published by CRC Press. This book was released on 2022-02-23 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Linear Algebra: Computation, Application, and Theory is designed for students who have never been exposed to the topics in a linear algebra course. The text is filled with interesting and diverse application sections but is also a theoretical text which aims to train students to do succinct computation in a knowledgeable way. After completing the course with this text, the student will not only know the best and shortest way to do linear algebraic computations but will also know why such computations are both effective and successful. Features: Includes cutting edge applications in machine learning and data analytics Suitable as a primary text for undergraduates studying linear algebra Requires very little in the way of pre-requisites
Download or read book Linear Algebra written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2018-05-24 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
Download or read book Linear Algebra written by Przemyslaw Bogacki and published by American Mathematical Soc.. This book was released on 2019-01-24 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra: Concepts and Applications is designed to be used in a first linear algebra course taken by mathematics and science majors. It provides a complete coverage of core linear algebra topics, including vectors and matrices, systems of linear equations, general vector spaces, linear transformations, eigenvalues, and eigenvectors. All results are carefully, clearly, and rigorously proven. The exposition is very accessible. The applications of linear algebra are extensive and substantial—several of those recur throughout the text in different contexts, including many that elucidate concepts from multivariable calculus. Unusual features of the text include a pervasive emphasis on the geometric interpretation and viewpoint as well as a very complete treatment of the singular value decomposition. The book includes over 800 exercises and numerous references to the author's custom software Linear Algebra Toolkit.